Poles and zeros of Green's function and its relevance to high- T_c cuprates

RIKEN Center for Emergent Matter Science Shiro Sakai

S.S, Y. Motome and M. Imada, PRL 102, 056404 (2009); PRB 82, 134505 (2010)

Strongly Correlated electron systems

Kinetic energy $K \sim$ Interaction energy I

• K>>I

Metal (Fermi liquid)

Itinerancy

• />>K

Mott insulator

Locality

Dual nature of strongly correlated electron

Dual nature of strongly correlated electron

Any more fundamental and microscopic representation?

Microscopic representation of itinerancy

<u>Band</u>

Solution of quasiparticle eq. $\omega - \varepsilon_{\mathbf{k}} - \text{Re}\Sigma(\mathbf{k},\omega)=0: \omega=\omega(\mathbf{k})$

Green's function

$$G(\mathbf{k},\omega) = \frac{1}{\omega - \varepsilon_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)}$$

 $\text{Re}G^{-1} \rightarrow \text{QP}$ eq. $\text{Im}G^{-1} \rightarrow 1/(\text{lifetime of QP})$

 Σ : self-energy

Itinerancy = (pole of G)

Itinerancy = (Existence of Fermi surface)

- = (Band crosses *E_F*)
- = $(\omega \varepsilon_k \text{Re}\Sigma = 0 \text{ has a solution at } \omega = E_F \& \text{QP exists})$
- $= ({}^{\exists}\mathbf{k} \text{ s.t. } G(\mathbf{k}, E_F)^{-1} = 0)$

Itinerancy = (pole of G)

Itinerancy = (Existence of Fermi surface)

- = (Band crosses E_F)
- = $(\omega \varepsilon_k \text{Re}\Sigma = 0 \text{ has a solution at } \omega = E_F \& \text{QP exists})$
- $= ({}^{\exists}\mathbf{k} \text{ s.t. } G(\mathbf{k}, E_F)^{-1} = 0)$

= (*G* has a pole at $\omega = E_F$)

Locality = (pole of Σ)

Gapped = (No pole of G around E_F) \rightarrow How does ReG change sign without going through G= ∞ ?

Locality = (pole of Σ)

Mott insulator

Locality = (pole of Σ)

Poles of \boldsymbol{G} and $\boldsymbol{\Sigma}$

Weak-coupling perturbation theory

Strongly correlated electron systems

Strong-coupling perturbation theory

Poles of G and Σ

Weak-coupling perturbation theory

Strongly correlated electron systems

Strong-coupling perturbation theory

Nonperturbative theory is necessary

Poles of G and Σ

Weak-coupling perturbation theory

Strongly correlated electron systems

Strong-coupling perturbation theory

Nonperturbative theory is necessary

Can $G = \infty$ and $\Sigma = \infty$ coexist? If so, what happens?

High-T_c cuprates

Cluster Dynamical Mean-Field Theory (CDMFT)

[Hettler *et al.*, PRB'98; Kotliar *et al.*, PRL'01]

2D Hubbard model

(Standard model for cuprates)

$$H = -\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Effective cluster model

A few interacting sites (cluster) + Dynamical mean field

Full short-range correlations *- Unbiased & nonpertabative!*

Mott transition at half filling

- Square lattice at T=0
- Paramagnetic solution

S.S, Y. Motome and M. Imada, PRL 102, 056404 (2009)

S.S, Y. Motome and M. Imada, PRL **102**, 056404 (2009)

S.S, Y. Motome and M. Imada, PRL 102, 056404 (2009)

S.S, Y. Motome and M. Imada, PRL 102, 056404 (2009)

 $G = \infty$ and $\Sigma = \infty$ in SCES.

Band ($G=\infty$) structure of weakly interacting system.

Structure of $G = \infty$ and $\Sigma = \infty$ in pseudogap state

$G = \infty \& \Sigma = \infty$ coexist at low ω!

 $\Sigma = \infty$ surface pushes down $G = \infty$ surface (pocket appears without symmetry breaking)

Structure of $G = \infty$ and $\Sigma = \infty$ in pseudogap state

$G = \infty \& \Sigma = \infty$ coexist at low ω !

 $\Sigma = \infty$ surface pushes down $G = \infty$ surface (pocket appears without symmetry breaking)

Interference between poles of G and $\boldsymbol{\Sigma}$

Stanescu & Kotliar, PRB **74**, 125110 (2006); S. S., Y. Motome, and M. Imada, Physica B **404**, 3183 (2009).

Fermi arc due to the interference of $G=\infty$ and $\Sigma=\infty$

Unified understanding of spectral anomalies

