"s"-wave pseudogap in underdoped cuprates

Shiro Sakai RIKEN Center for Emergent Matter Science

S.S., S. Blanc, M. Civelli et al., PRL 111, 107001 (2013)

Cuprates are *d*-wave superconductor

Pseudogap has been *assumed* to be *d* wave

No phase-sensitive evidence for the pseudogap structure.

Pseudogap observed in angle-resolved photoemission spectroscopy (ARPES)

Damascelli, Hussain and Shen, RMP'03 Occupied part of the electronic spectra $A(\mathbf{k}, \omega)$ is measured.

k-dependent gap

cf. Norman et al., Nature'98

ARPES "evidence" of *d*-wave pseudogap

According to ARPES, PG also looks like d-wave...

Antinode

ARPES "evidence" of d-wave pseudogap

According to ARPES, PG also looks like d-wave...

Antinode

Nothing is actually known about above E_F

But, these are "symmetrized" spectra:

Numerical results

2D Hubbard model (5% doping) 4x4 CDMFT [SS, S. Blanc, M. Civelli *et al.*, PRL **111**, 107001 (2013)]

2D *t-J* model (10% doping)

20-site exact diagonalization [T. Tohyama, PRB **70**, 174517 (2004)]

- Gap opens at every **k**.
- Energy position of the gap depends on **k**.

"s"-wave gap

different above $E_{\rm F}$

Compared to *d*-wave PG,

- similar below E_F
- different above E_F

Unoccupied spectra in the nodal region for underdoped cuprates

k-resolved unoccupied spectra are elusive

Possible in principle by inverse ARPES, though improvement of energy resolution is necessary.

ARPES

k-resolved occupied spectra

 \rightarrow Analysis of high-*T* data can give information of unoccupied spectra slightly above $E_{\rm F}$.

$$I(\mathbf{k},\omega) \propto \int A(\mathbf{k},\omega') f(\omega') R(\omega-\omega') \,\mathrm{d}\omega'$$

STM

k-*integrated* occupied and unoccupied spectra. \rightarrow A consequence of **k**-resolved spectra can be discussed.

$$\frac{dV}{dI} \sim \text{DOS}(\omega) = \int d\mathbf{k} A(\mathbf{k}, \omega)$$

Indication in ARPES

Analysis of high-T data → Strong e-h asymmetry consistent with "s"-wave PG.

Indication in STM

Electronic Raman Spectroscopy

First approximation:

 $\chi''(\omega) \propto \int d\mathbf{k} \gamma_{\mu}^{2}(\mathbf{k}) \int d\omega' A(\mathbf{k}, \omega') A(\mathbf{k}, \omega + \omega') [f(\omega') - f(\omega + \omega')]$ contributed from both occupied and unoccupied spectra.

[Devereaux and Hackl, RMP'07]

Light polarization gives momentum-space selectivity.

B_{2g} (nodal) Raman response

Experiment Bi2212 Raman Response (a.u.) UD74K δ~0.11 Increase \Rightarrow decrease at *intermediate* ω 80K 150K 250K 0 200 400 600 1000 800 Raman shift (cm⁻¹) Increases at low ω . (Metallic behavior)

The intermediate- ω depression in B_{2g} Raman signals the gap in the nodal region above E_F .

CDMFT

How can s-wave PG be reconciled with d-wave SC?

SC gap appears inside PG!

SS, S. Blanc, M. Civelli *et al.*, PRL **111**, 107001 (2013)
SS, M. Civelli, M. Imada, PRL **116**, 057003 (2016).
B. Loret, SS *et al.*, PRL **116**, 197001 (2016)

Peak-dip structure in B_{1g} Raman response

 Why and how does the ingap peak split?
 Under the strong scattering due to PG, how can the Bogoliubov peaks emerge?

Below T_c, the scattering (normal self-energy) is cancelled out by a contribution from anomalous self-energy.

> SS, M. Civelli, M. Imada, PRL **116**, 057003 (2016); Another slides (hiddenfermion.pdf).

Summary

"s"-wave pseudogap

- Finite gap even at the node but above $E_{\rm F}$.
- The gap below E_F is *d*-wave like.

	<i>d</i> -wave PG	" <i>s</i> "-wave PG
Numerical simulation (2D Hubbard, t-J)		
ARPES (occupied spectra)		
ARPES (E-h asymmetry)		
STM (E-h asymmetry)		
B _{2g} Raman (Finite-energy dip)		
B _{1g} Raman		