Hidden Fermionic excitation at the origin of Mott insulator, pseudogap and high-temperature superconductivity

RIKEN Center for Emergent Matter Science Shiro Sakai

July 18, 2019

Singularity (pole) of self-energy

1-electron Green's function ω dependence $G(\mathbf{k},\omega) = \frac{1}{\omega - \varepsilon_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)}$ is a key. No electron $G(\mathbf{k},\omega)=0$ $A(\mathbf{k},\omega)=0$ $\Sigma(\mathbf{k},\omega) = \infty$ at (\mathbf{k}, ω) i.e., gap. (in normal state) ω $\Sigma \sim \frac{1}{\omega - p}$ ReΣ ImΣ

Need to go beyond one-particle & perturbative theories

Numerical simulations can

go beyond Fermi-liquid theory BCS theory

Cluster dynamical mean-field theory

- Capable to describe the singularity of Σ
- Full short-range correlations
 - Unbiased
- Indeed reproduces cuprates' phase diagram!
 Sordi *et al.*, PRL'12; Gull *et al.*, PRL'13; ...

[Hettler et al., PRB'98; Kotliar et al., PRL'01]

2D Hubbard model

Self-energy pole generating the Mott gap

Self-energy pole generating the pseudogap

Self-energy pole making the SC "high- T_c "

The peak of Im Σ^{ano} enhances Re $\Sigma^{ano}(\omega=0)$ (~gap) by 5-10 times.

Origin of high T_c

[Maier et al., PRL **100**, 237001 (2008)]

Poles of SC and PG are continuously connected!

Poles of SC and PG are continuously connected!

Poles of SC and PG are continuously connected!

TA

Poles of SC and MI are continuously connected!

 $(\mathbf{0})$

SS, M. Civelli and M. Imada, PRB 98, 195109 (2018)

Continuous evolution with doping

- Peak enhancing SC emerges at ω_{Mott} , which characterizes the Mott gap.

These poles are essentially the same!

- Mott physics yields high-T_c SC and pseudogap.
- Relation between high-T_c SC and pseudogap.

What does the self-energy pole mean?

Self-energy pole = Hidden Fermion

Phenomenological model:

$$H = \sum_{\mathbf{k}\sigma} \left[\varepsilon_{c}(\mathbf{k}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \varepsilon_{f}(\mathbf{k}) f_{\mathbf{k}\sigma}^{\dagger} f_{\mathbf{k}\sigma} + V(c_{\mathbf{k}\sigma}^{\dagger} f_{\mathbf{k}\sigma} + f_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma}) \right]$$

c : Bare electron

f: Hidden fermion (emergent from strong correlation)

Integrating out $f \rightarrow Eq. (1)$

Self-energy pole = Hidden Fermion

Extension of the model to SC state:

$$\Sigma^{\text{nor}}(\mathbf{k},\omega) = \frac{V(\mathbf{k})^2(\omega + \varepsilon_f(\mathbf{k}))}{\omega^2 - \varepsilon_f(\mathbf{k})^2 - D_f(\mathbf{k})^2}$$

$$\Sigma^{\text{ano}}(\mathbf{k},\omega) = D_c(\mathbf{k}) - \frac{V(\mathbf{k})^2 D_f(\mathbf{k})}{\omega^2 - \varepsilon_f(\mathbf{k})^2 - D_f(\mathbf{k})^2}$$

Self-energy pole = Hidden Fermion

Extension of the model to SC state:

$$H = \sum_{\mathbf{k}\sigma} \left[\varepsilon_{c}(\mathbf{k}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \varepsilon_{f}(\mathbf{k}) f_{\mathbf{k}\sigma}^{\dagger} f_{\mathbf{k}\sigma} + V(c_{\mathbf{k}\sigma}^{\dagger} f_{\mathbf{k}\sigma} + f_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma}) \right]$$

$$- \sum_{\mathbf{k}} \left[D_{c}(\mathbf{k}) c_{\mathbf{k}\uparrow} c_{-\mathbf{k}\downarrow} + D_{f}(\mathbf{k}) f_{\mathbf{k}\uparrow} f_{-\mathbf{k}\downarrow} + \text{h.c.} \right]$$

Integrating out $f = \frac{1}{2^{\text{eff}}} \exp(-S^{\text{eff}[c^{\dagger},c])} = \frac{1}{2} \int \mathcal{D}f^{\dagger}\mathcal{D}f \exp(-S[c^{\dagger},c,f^{\dagger},f])$

$$\Sigma^{\text{nor}}(\mathbf{k},\omega) = \frac{V(\mathbf{k})^{2}(\omega + \varepsilon_{f}(\mathbf{k}))}{\omega^{2} - \varepsilon_{f}(\mathbf{k})^{2} - D_{f}(\mathbf{k})^{2}}$$

$$\Sigma^{\text{ano}}(\mathbf{k},\omega) = D_{c}(\mathbf{k}) - \frac{V(\mathbf{k})^{2}D_{f}(\mathbf{k})}{\omega^{2} - \varepsilon_{f}(\mathbf{k})^{2} - D_{f}(\mathbf{k})^{2}}$$

Poles at the same ω 's, in consistency with CDMFT.

Fitting of low-energy part of self-energy

SS, M. Civelli and M. Imada, PRB **94**, 115130 (2016)

Low-energy part is well fitted by hidden-fermion model.

Pole-to-pole cancellation in G

SS, M. Civelli and M. Imada, PRL 116, 057003 (2016)

$$G(\mathbf{k},\omega) = \left[\omega + \mu - \varepsilon_{\mathbf{k}} - \Sigma^{\text{nor}}(\mathbf{k},\omega) - W(\mathbf{k},\omega)\right]$$
$$W(\mathbf{k},\omega) = \frac{\Sigma^{\text{ano}}(\mathbf{k},\omega)^{2}}{\omega - \mu + \varepsilon_{\mathbf{k}} + \Sigma^{\text{nor}}(\mathbf{k},-\omega)^{*}}$$

Residues at the poles in hidden-fermion model

$$\operatorname{Res}_{\Sigma}\operatorname{nor} = \frac{V^2}{2} \left(1 \pm \frac{\varepsilon_f}{\sqrt{\varepsilon_f^2 + D_f^2}} \right)$$
$$= -\operatorname{Res}_W$$

Fully consistent!

What do these results mean?

Pole-to-pole cancellation

SS, M. Civelli and M. Imada, PRL **116**, 057003 (2016)

This explains why the self-energy peak has eluded an experimental detection.

Recently detected by ARPES+Machine learning! [Y. Yamaji et al., arXiv: 1903.08060]

Bogoliubov peak can emerge from broad spectra

How can a coherent Bogoliubov peak emerge from a broad spectrum lacking quasiparticles?

 $T > T_c$ Large Im $\Sigma^{nor} \rightarrow$ Pseudogap & broad spectra

T < T_c
 ∑^{nor} is canceled with W.
 → Sharp Bogoliubov peak.

Binding Energy (eV)

ARPES for Bi2212, UD89K, **k**=(π,0) Campuzano *et al.*, PRL **83**, 3709 (1999) Another consequence: Peak-dip-hump [PRL **116**, 057003; PRL **116**, 197001 (2016)]

PG and SC gap involve different singularities

i.e., mathematically different!

$$G(\mathbf{k},\omega) = \left[\omega + \mu - \varepsilon_{\mathbf{k}} - \Sigma^{\text{nor}}(\mathbf{k},\omega) - W(\mathbf{k},\omega)\right]^{-1}$$
$$W(\mathbf{k},\omega) = \frac{\Sigma^{\text{ano}}(\mathbf{k},\omega)^{2}}{\omega - \mu + \varepsilon_{\mathbf{k}} + \Sigma^{\text{nor}}(\mathbf{k},-\omega)^{*}}$$

SC gap

8

However, the same hidden fermion is at the origin of both pseudogap and 'high T_c ':

Unified understanding of pseudogap and high- T_c superconductivity

Fermionic high- T_c mechanism

Bosonic glue ("conventional")

Origin of the hidden fermion f is in the Mott gap

Direct microscopic relation between MI and high-T_c SC.

Two different low-energy excitations in doped Mott insulators

[Yamaji and Imada, PRL 106, 016404 (2011)]

Extended in space \rightarrow Quasiparticle

or

Weakly bound to the hole \rightarrow Hidden fermion

Conventional superconductor

BCS theory tells a relation in the spectral function

Strongly-correlated superconductor

Direct connection in spectra is hard to imagine.

Superconducting gap $\ll U$

Conventional superconductor

BCS theory tells a relation in the spectral function

Property of SC determined by insulator

Summary

Low-energy dynamics in MI, PG and SC states is governed by a self-energy pole (= hidden fermion)!

