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Chapter 1

Introduction

1.1 Strongly correlated electron systems

Electron correlation problem in transition-metal-based materials is one of the most in-
triguing challenges in condensed-matter physics. The materials exhibit remarkably ver-
satile properties for electronic transport (metallic, insulating, superconducting, etc.) and
magnetism (paramagnetism, ferromagnetism, antiferromagnetism, etc.), and sometimes
totally change the properties according to temperature, pressure, external fields, and chem-
ical dopings.

Experimental research for the compounds was fuelled by the discovery ofThigh-
superconductivity in cuprates [1], and was accelerated by subsequent discoveries of un-
conventional superconductivity in other materials such aR&8, [2], colossal magne-
toresistance in manganites [3, 4, 5], complex magnetic phase diagrams in manganites [6],
cobaltates [7, 8, 9], and so on.

In these materiald electrons of the transition metals dominate the low-energy prop-
erties. The diversity in physical properties is attributed to the partially localized nature
of the d electrons, which hop around in a crystal, where electron-electron repulsions
are as large as the kinetic energy. The duality of the itinerant and the localized fea-
tures of thed electrons makes the problem quitéidiult because perturbation approaches
break down. Therefore theoretical studies for the system have evolved with developments
of non-perturbative methods. Drastic improvements of computer facilities have further
pushed theoretical studies to more realistic and accurate calculations.

1.2 The single-orbital Hubbard model

A simplest model for thel electrons in transition metals or their compounds is the single-
orbital Hubbard model [10],

|:| = tZ CiT(TCjU +U Z NipNiy, (11)
i
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Figure 1.1: Schematic density of states in the Mott-Hubbard insulator-to-metal transition.

wherecﬁg(cig) is the creation(annihilation) operator for the electron with gpit lattice
pointi, andn;, = cfgci(,. The first term represents electron hoppings to neighboring sites,
and the second term describes the on-site Coulomb repuldionQ).

It has turned out that the single-orbital Hubbard model, despite the simplicity, can
describe a variety of phenomena, such as metal-insulator transition, ferromagnetism, un-
conventional superconductivities. In the following we give a brief introduction for these
phenomena.

1.2.1 Mott’s metal-insulator transition

In the band theory, which is based on a one-electron picture, insulators must have even
number of electrons per atom. However, some transition-metal oxides are insulating in
spite of having odd number of electrons per atom [11].

Mott and Peierls [12] pointed out that the insulating behavior should be due to the
Coulomb repulsion between electrons: If two electrons are on the same site, the electrons
feel a strong Coulomb repulsion. Hence when the interaction is large and a valence band
is half filled, that is, the number of valence electrons per site is one, the electrons cannot
hop among neighboring sites, and the material becomes an insulator. Such an insulator is
called the Mott insulator [13].

The Hubbard Hamiltonian (1.1) should be appropriate for describing the above situa-
tion. In fact, Hubbard [10] showed that at half filling the density of states for a ldrgas
two peaks at arounBg + 3 (Eg: the Fermi level), and an energy gap exists between the
two peaks, which corresponds to the insulating behavior suggested by Mott and Peierls.
As U is decreased, the gap becomes narrower and vanishes at a criticalyaleich
is an insulator-to-metal transition driven by electron correlations (Fig. 1.1). Indeed, this
type of insulator-to-metal transition has been found for some Mott’s insulators [14, 15],
exemplified by O3 [16], where the bandwidthV, and therebyJ/W, is controlled by
pressure or chemical dopings.

The Hubbard theory, however, fails to reproduce quasiparticle properties in the metal-
lic state. Brinkman and Rice [17] considered Mott’s transition from the metallic side in
a mean-field theory. They described the transition as the divergence of the quasiparticle
effective mass. However, this theory cannot reproduce the splitting of the density of states
in the insulating side.

The first unified description of the Mott transition was achieved by the dynamical
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Figure 1.2: Ground-state phase diagram agadihandyu (u: chemical potential) for the
two-dimensional single-orbital Hubbard model on the square lattice with nearest-neighbor
hoppingt = 1 and next-nearest-neighbor hopping —0.2, calculated by Watanabe and
Imada [28] with the path-integral renormalization-group method. Half filling corresponds
tou = —0.5 (dashed line). (From Ref. [28].)

mean field theory (DMFT) [18]. It reproduces the insulating density of states as well as the
divergence of the quasiparticl&ective mass. The results are described in det&iBig.1.

The DMFT is exact in the limit of the infinite spatial dimension, and for one, two and three
dimensions the DMFT is an approximation which neglects spatial fluctuations. While
the approximation is considered to be good for three dimensions, the spatial fluctuations
would be significant in one and two dimensions.

The two-dimensional Hubbard model has attracted much attention since the discovery
of high-T, superconductivity in cuprates which have a layered structure [1]. Because the
superconductivity has been found in a hole- or electron-doped region for Mott’s insulators
(e.g., LaCu(y), a study for carrier-doped Mott’s insulators has a special importance.

The filling-control Mott metal-insulator transitions have been studied by many authors
[14], [18]-[28]. Watanabe and Imada [28] investigated the two-dimensional Hubbard
model with the path-integral renormalization-group method [29], which projects a system
onto its ground state through a renormalization process. They obtained the ground-state
phase diagram in the plane dfand the chemical potential(Fig. 1.2). The Mott transi-
tion at half filling is found to be the first order while the filling-control Mott transition is
continuous, in agreement with quantum Monte Carlo studies [19].

1.2.2 ltinerant Ferromagnetism

The single-orbital Hubbard model (1.1) was originally introduced as a model for itiner-
ant ferromagnetism in transition metals such as Fe, Co and Ni [10, 30, 31]. Although



the Hartree-Fock approximation provides a ferromagnetic ground state for dJathe
approximation obviously overestimates the ferromagnetic instability since electron cor-
relation dfects, which destabilize the ferromagnetic ground state [10], are neglected. To
take account of the correlatiorfects, many approximate theories have been developed
(see§5.1.2). The studies indicate that lattice structures are crucial for stabilizing ferro-
magnetism.

In some restricted situations, the ground state is rigorously shown to be ferromagnetic
[32]. The first rigorous proof in the single-orbital Hubbard model was provided by Na-
gaoka [33]. He showed that the ground state in the strong-coupling it (o) is
ferromagnetic when a single hole is doped to a half-filled band. An intuitive picture of
this ferromagnetism is that the doped hole hops around the lattice, aligning electron spins
localized by the infinitely large Coulomb interaction.

Another rigorous example showing ferromagnetism is a bipartite lattice wreint
number of sublattice sites. Lieb [34] proved that, in the ground state at half filling, each
sublattice has totally aligned spins with the antiparallel sublattice magnetizations for ar-
bitrary magnitudes of the repulsiah. Then, the diferent numbers of the sublattice sites
result in a ferrimagnetic ground state. From the viewpoint of the momentum space, the
different numbers of sublattice sites imply the existence of a flat band, where, roughly, the
absence of the loss of the kinetic energy is a cause of the ferromagnetism. Mielke [35]
and Tasaki [36, 37] have proved the existence of ferromagnetic ground states for a class
of lattices constructed to have flat bands.

However, for more ordinary lattices and for couplings comparable to bandwidths,
which is the real situation in transition metals and their oxides, the occurrence of a fer-
romagnetic order in the single-orbital Hubbard model is still an open question. In other
words, ingredients neglected in the single-orbital Hubbard model may be important for
explaining ferromagnetism in transition-metal-based materiakl.Band in Chap. 5, we
shall discuss the importance of tHeorbital degrees of freedom, which has been pointed
out by many authors [38, 39].

1.2.3 Superconductivity

The discovery of highF, superconductivity in cuprates [1] has also aroused much interest
in the single-orbital Hubbard model. Since cuprates have a layered perovskite structure,
the two-dimensional Hubbard model has attracted most intensive attentions. The sym-
metry of the gap function was experimentally identifieddas,. [40]. Although a full
consensus on the mechanism of highsuperconductivity has not been achieved yet, it is
expected to be explained with the mechanisms caused by electron-electron interactions.
The d-wave superconductivity mediated by spin fluctuations [41, 42] was theoreti-
cally suggested with various methods including the random phase approximation [43], the
fluctuation-exchange approximation [44], and the self-consistent renormalization theory
[45]. Quantum Monte Carlo simulations [46, 47, 48] for the two-dimensional Hubbard
model indicate that thd,._.-wave pair correlation becomes most dominant for a region
slightly doped from half filling, although the superconducting transition point itself has



not been detected. Recently, Mawgral. [49] reported a finiteT; for the dy._y.-wave
superconductivity in the two-dimensional Hubbard model, based on the dynamical clus-
ter approximation (DCA) [50], which is an extension of the DMFT to incorporate spatial
fluctuations (se€3.2.3). In two-dimensional systems the Mermin-Wagner theorem [51]
precludes any continuous transition at finite temperatures, except for a topological transi-
tion of Kosterlitz-Thouless type [52]. Maiet al. discussed the relevance of their DCA
result with the Kosterlitz-Thouless transition.

Since the discovery of cuprate superconductors, intensive experimental researches
have found many unconventional superconductors, for examplRuSy [2] and a hy-
drated cobaltate, N€0G, - yH,0 [53]. While SpRuQO, has the same crystal structure as
cuprates, the superconducting symmetry was identified as spin triplet [54]. On the other
hand, in NaCo0, - yH,0, Co forms a triangular lattice, in contrast to the square lattice
of Cu in cuprates. The diversity of unconventional superconductors has attracted both
experimental and theoretical interests.

1.3 Orbital degrees of freedom

Although the single-orbital Hubbard model has provided remarkably various phenom-
ena in spite of its simplicity, the validity of the model for general transition metals and
transition-metal oxides has still been an open question. An important ingredient neglected
in the single-orbital Hubbard model is the orbital degrees of freedothedéctrons, i.e.,
the degrees of freedom of orbital angular momenturd efectrons in a transition-metal
atom.

The importance of thd-orbital degeneracy, in particular of Hund’s exchange coupling
on ferromagnetism, was already pointed out by Slater [38] as early as in the 1930s. A
vast amount of experimental and theoretical studies in the past decades have revealed the
pivotal role of orbitals in transition-metal-based materials, not only on ferromagnetism
but also on metal-insulator transitions and unconventional superconductivities [6]. Also a
variety of new phenomena, which are not captured in the single-orbital Hubbard model,
have been uncovered in multiorbital systems; for example, the colossal magnetoresistance
and orbital orderings.

In §1.3.1 we explain the crystal-fieldfect ond orbitals. In§1.3.2 we examine some
notable &ects of interorbital interactions in a perturbation theory. We introduce a variety
of multiorbital phenomena in real materials§t.3.3, particularly taking Ga,SrRuO,
as a typical example.

1.3.1 dorbitals in crystals

There is a five-fold degeneracy for tkeelectrons in a spherical field, according to the
orbital angular momentum frotp = —2 to 2. The wave functions of the orbitals are
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wherea, is the Bohr radius and is the atomic number. The abod@rbitals are schemat-
ically shown in Fig. 1.3. Hereafter we call these wave functidgsd,,, d.,, d_y2 and
d322_r2.

In crystals the degeneracy of tldeorbitals is (partially) lifted due to the Coulomb
potential from surrounding ions. How the degeneracy is lifted depends on a crystal struc-
ture. Here we consider the case that a crystal field has the cubic symmetry, that is, a
transition-metal atom is surrounded by ions at the same distance iaxthey and+z
directions. This situation is realized in perovskite-type transition-metal oxides, where a
transition metal is surrounded by siX¥Oons [Fig. 1.4(a)]. The cubic crystal field ele-
vates the energy ad,._,» andds2_» orbitals, which are extending to the ligand oxygen
ions, compared to that af,,, dy, andd,, orbitals, which are extending in the direction
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Figure 1.4: An example of a crystal-fieldfect in transition-metal oxides. (a) A scheme
for a transition metal ion (M) surrounded by six oxygen ions. (b) Level scheme for the
cubic crystal-field &ect.

between the oxygen ions. Hence the fierbitals split into a two-fold degenerate subset,
€ = {de_y2, d32_r2}, and a three-fold degenerate subggt= {dyy, dy,, dy.} [Fig. 1.4(b)].

Since the energy split betweepandty is typically of order of 1 eV for 8 transition-
metal oxides, usually only one of the subsetspr t,4, crosses the Fermi energyln
SrVG;, for example, V* has only onel electron, so that only thigy bands traverses the
Fermi energy and they bands are empty. Therefore a model for low-energy phenomena
in transition-metal oxides usually requires two or three orbitals.

In elemental transition metals such as Fe and Ni, however, the crystalfietd is
relatively small because of weak ionic potentials, so that thedieebitals are almost
degenerate and all tiiebands are partially filled.

1.3.2 Coulomb-matrix elements betweed electrons

When we consider the-orbital degrees of freedom, the on-site Coulomb interactions be-
tweend electrons are not characterized by a single paramétas in the single-orbital
Hubbard model. We introduce three parameters for the Coulomb interactions in multior-
bital system$as

U: between two electrons in the same orbital with antiparallel spins,

1in some materials, botty andtyy bands are partially filled. A typical example is LaMg®@ee§1.3.3),
where Hund’s coupling is larger than the crystal-field splitting so that the doglectrons occupy four
different orbitals, i.e., thregy orbitals and oney orbital.

2We discriminate between ‘multiorbital’ and ‘multiband’. ‘Multibands’ derive from multiple atoms
in the unit cell while ‘multiorbitals’ derive from orbital degeneracy on one atom. The crudi@rdnce
is in the strength of interactions. In multiorbital models the interorbital interactions are as strong as the
intraorbital Coulomb interactiobd while in multiband models intersite interactions are much weaker than
the intrasite Coulomb interactidd. The strong interorbital interactions make multiorbital problems much
more dificult than multiband ones.
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Figure 1.5: The kinetic exchange processes. The horizontal lines represent orbitals on
each site, up and down arrows denote electron spins, and gray arrows virtual transfers.

U’: between two electrons inftierent orbitals with antiparallel spins,
U’ — J: between two electrons infiierent orbitals with parallel spins.
We give more precise definition &f, U’ andJ in §2.1.

Since overlaps of wave functions infidirent orbitals are smaller than those in the
same orbitallJ’ is smaller tharJ. Also, because two electrons with parallel spins cannot
occupy the same space due to the Pauli exclusion principle, the two electrons keep away
from each other. This means tHat — J should be a weaker repulsion thar, so that
0 < J < U’ is concluded. We can immediately see that the Hund couglfiagors on-site
spin polarizations.

The presence of the interorbital interactiobs,and J,* makes multiorbital systems
completely diterent from single-orbital systems. Although the above interactions are
local (i.e., on site), they canffact bulk properties through electron transfers between
sites. To obtain some intuitive picture for thidext, it is instructive to consider aiffective
interaction between neighboring electron spins in the strong coupling limit.

Considering a system with one electron per site in the strong coupling limit, we eval-
uate the energy reduction in the second-order perturbation with respect to the nearest-
neighbor transfet [57]. In single-orbital systems thefective interaction (kinetic ex-
change interaction) works antiferromagnetically on neighboring electron spins, since the
electron transfer is possible only when the neighboring electrons have antiparallel spins.
When we consider orbital degrees of freedom, the situation is completely changed. The
simplest example is a two-orbital system with one electron per site (quarter filling) [57,
58]. When the electron on a neighboring site occupies the same orbital [Fig. 1.5(a)], the
transfer is only allowed for antiparallel spins, then the second-order contribution to the
total energy is

t2

U (1.4)
When the electron on a neighboring site occupiesféerdint orbital, the second-order
contribution is diferent for parallel and antiparallel spins: For a parallel spin [Fig. 1.5(b)]

31t has been pointed out that the reduction of the interaction energy between nuclei and electrons, which
is not taken into account in the above discussion, is important to account for Hund'’s rule in real materials
[55, 56].

4As we explain ing2.1, there is a relatiod)’ = U — 2J for d orbitals when the crystal field has a cubic
symmetry. In that case only two amoblg U’ andJ are independent parameters.

8
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Figure 1.6: (a) The high-spin and (b) the low-spin states in Lafa® schematically
shown. (c) The intermediate-spin state suggested by Koebth [59]

itis
tZ
L 1.5
U, _ J ( )
while for an antiparallel spin [Fig. 1.5(c)] itis
t2
- 1.6
i (1.6)

These results mean that a neighboring electron tends to occugkeeedt orbital with

a parallel spin [Fig. 1.5(b)]. Then, if a lattice is bipartite, a ferromagnetic order with
antiferro-orbital ordering (i.e., electrons occupying two orbitals alternately) is expected
for two-orbital systems at quarter filling. In fact, such orderings have been found in
various numerical calculations for the double-orbital Hubbard model§sde?).

For general band fillings and for the interactions comparable to bandwidths, the above
discussion does not apply straightforwardly. Tifteet of interorbital interactions is more
involved there, and this provides various intriguing phenomena. We see such examples in
Mott’s transition, ferromagnetism and superconductivitg33.

1.3.3 Example for real materials

Orbital degrees of freedom play important roles in most transition-metal-based materials.
The colossal negative magnetoresistance in manganites [3, 4, 5] is basically under-

stood in terms of a strong Hund’s coupling betweesiectrons. In manganites, Mnhas

d* configuration. Three of the electrons occupsg orbitals with a parallel spin and form

a localized spir6 = % while the remaining one electron occupies one ofgherbitals,

which are more dispersive thay orbitals. Theey electrons move around the crystal feel-

ing a strong Hund’s coupling to the localizeg spins. When a magnetic field is applied,

9
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Figure 1.7: Schematic structures of spin and orbital ordered states in.Y(&DPC-type

spin ordering and G-type orbital ordering, (b) G-type spin ordering and C-type orbital
ordering. Open arrows indicate spins and gray and black lobes indicate ocdyaed

d,x orbitals on vanadium ions, respectively. The commonly occugigarbital is not
shown for clarity. (From Ref. [65].)

the localizedt,q spins are aligned in the direction of the field. Then the conduajng
electrons can move in the crystal smoothly, which causes an extraordinary reduction of
electronic resistance.

LaCoG; has a spin-state transition from a high-sgin< 2) state [Fig. 1.6(a)] at high
temperaturesy 100 K) to a low-spin§ = 0) state [(b)] at low temperatures (L00 K) [7,

8, 9]. This transition is caused by a competition of Hund’s rule and level splitting by lattice
distortions, which depends on temperature. At high temperatures, Hund’s coupling is
larger than the crystal-field splitting, so that the diglectrons at C ion occupy the five
spin-up states, and the remaining one electron occupies a spin-down state in thigglower
orbitals, then th& = 2 state is realized. On the other hand, at low temperatures the lattice
distortion changes and the crystal-field splitting exceeds Hund’s coupling, so that the six
d electrons fill thety, orbitals, then the total spin at €odisappearsg = 0). Korotin et

al. [59] suggested, based on an LBA calculation, that an intermediate-spi@ € 1)

state [Fig. 1.6(c)] exists between the high- and low-spin states. The possible existence of
this state has been intensively discussed from both experimental and theoretical points of
view [9], [59]-[62].

Orbital orderings have been found in many transition-metal oxides [6, 60], such as
manganites [63], vanadates [64, 65, 66], and titanates [67, 68]. Orbital ordering some-
times accompanies a change of spin orders. Mott’s insulator YN&3 two types of spin
and orbital ordering patterns at low temperatures<(115 K): Below 71 K the spin or-
der is G-type antiferromagnetic (antiferromagnetic alongaitec axes) while the orbital
order is C type (antiferro-orbital order in tla plane and ferro-orbital order along the
c axis) [Fig. 1.7(a)] [64, 65, 69]. For 71 k T < 115 K the order changes to C type
for spin and into G type for orbitals [Fig. 1.7(b)]. The band calculation with the local
spin-density approximation cannot explain the band gap of ¥ W&hile the generalized
gradient approximation provides a band gap, it cannot explain the G-type spin ordering

10
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Figure 1.8: Two types of lattice distortion in Y\f@after Ref. [60]).

in the ground state [66]. A realistic Hartree-Fock calculation by Mizokawa and Fujimori
[60] reproduced the band gap, as well as the G-type antiferromagnetic ground state on
the assumption of d-type distortion of the lattice [Fig. 1.8(b)], which is experimentally
observed. However, the a-type distortion [Fig. 1.8(a)] is more favored than the d-type
one in the Hartree-Fock calculation, in contradiction to the real structure. Also the cal-
culated band gap is larger by 1-2 eV than the experimental values. These results indicate
significant correlationféects.

The unconventional superconductor,8a0; - yH,0 has also been studied as a multi-
orbital system. Mochizuket al. [73] and Yanaset al. [74] implemented the fluctuation-
exchange and a perturbative calculations for the multiorbital Hubbard model with a real-
istic bandstructure, and suggested that a spin-triplet superconductivity can be realized due
to Hund’s coupling. While some Knight shift data [70] imply a triplet pairing, the sym-
metry of the Cooper pair is still controversial both in experiments [71, 72] and in theories
[73]-[77].

Ca_«SrkRuQ, has also drawn much interest on the roles of orbital degrees of freedom.
Ca_xSikRuO, has a single-layered perovskite structure [Fig. 1.9(a)], where Bands
split into e; andt,y bands due to the crystal-fieldfect. The fourd electrons at RY
occupy the lowet,y orbitals, where the Hund coupling aligns three of the four electron
spins and remaining one electron has the opposite spin [see Fig. 1.9(b)].

A phase diagram experimentally obtained by Nakaestigi. [79] is shown in Fig. 1.10.

In the following we explain the phase diagram in detail, as an introduction to multiorbital
systems, as well as to the LBAMFT calculation for SfRuQ, implemented in Chap. 6.

At x = 2 (SLRuUQ,) the material shows a spin-triplet superconductivity at low temper-
atures T. ~ 1K) [2, 78]. Above the transition temperature the material is a paramagnetic
metal. The superconductivity disappears with a slight Ca doping, apnd®&&RuQ, is a
paramagnetic metal forD< x < 2.

Around x = 0.5 there is a ferromagnetic cluster glass phase at low temperatures. The
phase has no long-range order, but has a ferromagnetic short-range order, which forms
clusters.

0.2 < x < 0.4 is a metallic region with an antiferromagnetic correlation. In this region

11
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Figure 1.9: (a) Crystal structure of £aSr,RuQ, (from Ref. [78]). (b) Level schemes for
SrLRuG, and CaRuO,.

an antiferromagnetic short-range order coexists with metallic properties.

Below x = 0.2 the material becomes an insulator with an antiferromagnetic long-
range order folT < 100 K. CaRuQ, (x = 0) remains insulating even above théell
temperature, so it is considered a Mott-Hubbard insulator [80].

Since Ca and Sr have the same valence’ Ran has fourd electrons irrespective
of x. However, because €ahas a smaller ionic radius than®Srstructural distortions
are introduced by substituting Sr by Ca fopBuQ,, which has the undistorted tetragonal
structure. The distortions (that involve a tilting of Ryi@ctahedra; Fig. 1.11) reduce elec-
tron transfers between Ru sites, so that the bands become narrower by Ca substitutions.
The band narrowing seems to account for the insulating behavior 400.2. However,
for understanding the insulating phase as well as the whole phase diagram, it is necessary
to take into account the Rdiorbital degree of freedom, as we discuss below.

- SKLRUQ, (X = 2)

RuQ; octahedra in SRuQ, have no rotational distortion [Fig. 1.11(a)] but are elon-
gated along the axis, which slightly elevates the energy @f, orbital (by ~ 0.1 eV)
compared to thely,,, level. Nevertheless, the threg orbitals are almost equally filled in
SrRuOy, that is, eacl,y orbital has abou% electrons. We discuss the electronic structure
of this material in more detail in Chap. 6.

- CaRUuQ, (x=0)

On the other hand, the octahedra inRa0, are compressed along thexis, as well
as rotated around theaxis and tilted around an axis in tlaé plane [Fig. 1.11(c)] [81].
The compression lowers the energy of thgorbital, so it is expected that thig, band
is almost filled and thely,,, bands are half filled [Fig. 1.9(b)]. Then, the band narrowing
due to the rotational distortions may make the half-filkggl,, orbitals Mott-insulating
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Figure 1.10: Phase diagram for £g&rRuQ,, experimentally obtained by Nakatsej
al. [79]

while the d,y orbital is band-insulating [82, 83]. The scenario, however, conflicts with
the X-ray absorption measurement by Mizokastaal. [84], which indicates than,, :

(N + ny) = 1 : 3 (N, is the electron number per site in orbigl at 300 K andn,y :
(ne+ny) = 3 : 2 at 90 K. While Mizokawaet al. discussed the result in terms of
the spin-orbit interaction, Hotta and Dagotto [85] proposed an orbital ordered state with
Ny @ (N +Ny;) = 2 : 2 stabilized by electron-electron and electron-lattice couplings.
However, the lattice distortion corresponding to the orbital order has not been observed
in experiments. Fangt al. [86] emphasized, based on a first-principles calculation, the
importance of the two-dimensional feature of the crystal field, which derives from the
layered structure of GRuQy, on the stability of th§ : g configuration. Thus the ground
state of CaRu(Q; is still controversial.

- Paramagnetic metal)X(7 < x < 2) and ferromagnetic cluster glas8.4 < x < 0.7)

The appearance of the ferromagnetic cluster glass phase axeufid is expected to
be related with a structural change at this filling: Frem 2 to x = 0.5, RuQ; octahedron
rotates around the axis, without any tilt of the basal plane, by updgo~ 12° atx = 0.5
[Fig. 1.11(b)], while atx = 0.5 it starts to tilt around an axis in ttedb plane up t@ ~ 12°
atx = 0, keepingp ~ 12 [Fig. 1.11(c)].

Here we consider an interaction (superexchange interaction) between neighboring Ru-
d electrons through thpdr hybridizations with Op orbitals [87]. Atx = 2 the material
has no rotational distortion [Fig. 1.11(a)], so that the superexchange interaction exists only
between the same orbitals, which works antiferromagnetically. Asdecreases, the ro-
tation of RuQ@ octahedra increases [Fig. 1.11(b)]. Then the antiferromagnetic interaction
decreases due to the reduction of the hybridizations while a ferromagnetic superex-
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Figure 1.11: The distortions of a Ry@ctahedron in Ca,SrRuQ,. (a) Undistorted
structure in SKRuQy. (b) Rotational distortion around theeaxis @) for 0.5 < x < 2. (c)
Rotational distortiond) + tilt (¢) of the basal plane for @ x < 0.5.

change interaction appears between neighbalipgrbitals through the Hund coupling
at oxygen site. This may be a reason for the increasing ferromagnetic fluctuation down to
x=0.5.

- Antiferromagnetic metallic regior0(2 < x < 0.4)

When the tilt of the octahedra is introduced belaw= 0.4, the pdr hybridizations
are significantly reduced, then thg bands become narrower. For the antiferromagnetic
metallic region (2 < x < 0.4), Anisimovet al. [83] proposed a novel phase where the
dx.y Orbitals are Mott insulating with antiferromagnetic correlations whiledferbital
is metallic. This idea is based on the observation thaband is wider thaml,,,, bands
because of the quasi-two-dimensional feature of the crystal structure (for more detail,
see§6.2). Their proposition fuelled intensive studies for Mott’s transition in multiorbital
systems (seg3.3.4). However, it has still been controversial whether such a coexistence
of metallic and Mott-insulating bands can be realized in the present material. Indeed,
there are some experiments against Anisimov’s picture; a polarized neuffactidn
experiment [88] indicates a larger magnetic moment for the wideurbital than that for
the narrowewd,,, dy, orbitals, and an optical conductivity analysis [89] suggests a larger
effective mass fod,, quasiparticles than that fak., d,, ones. These experiments imply
that thed,, orbital is more localized than th#,,, orbitals, in conflict with Anisimov’s
picture. While more detailed researches are needed for the redlorn & < 0.4 in
Ca_xSrkRuQy, Anisimov’s proposal opened a new avenue for orbital-dependent physics.

1.4 Motivation and outline

The orbital degrees of freedom can be a key factor for understanding the diverse proper-
ties of transition-metal-based materials since the orbital degrees of freedom are involved
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in most of the materials. In particular, Hund’s coupling, which is directly related to the
spin degrees of freedom, makes multiorbital physics substantidfigreint from the one

in single-orbital systems. However, the complexity of multiorbital systems has ham-
pered theoretical studies, especially for intermediate-couplihg~( W) regions with

finite Hund’s coupling, which are realized in transition metals and transition-metal ox-
ides. Hence a development of reliable atidiceent theoretical methods for multiorbital
systems has a general importance, and many significant issues remain open in multiorbital
systems.

In this thesis we investigate electron correlation problems in multiorbital systems,
where our main interest is in tlele of Hund’s couplingHowever, conventional schemes
have dificulties in treating multiorbital systems, in particular in the presence of Hund’s
coupling. For example, the exact diagonalization method cannot treat large systems,
therefore its application has been restricted to one-dimensional two-orbital systems. While
the conventional quantum Monte Carlo (QMC) method can treat larger systems than the
exact diagonalization method, the QMC methoffens from a severe negative sign prob-
lem (see§4.3) in the presence of Hund’s coupling.

Here we develop a novel QMC method (Chap. 4) for multiorbital systems with the
Hund coupling, and combine the algorithm with the dynamical mean-field theory (DMFT)
(Chap. 3) to solve the problem in the thermodynamic limit. An important point of the
present method is that it can treat spin-SU(2) symmetric Hund’s coupling and the pair-
hopping interaction, which are needed fweserving spin and orbital rotational symme-
tries in the multiorbital Hubbard Hamiltonian (s€2.1). Most of DMF+QMC stud-
ies for multiorbital systems so far have only taken account ofztfieing) component
of Hund’s coupling and neglected thxey components and the pair-hopping interaction
(§2.2), because the conventional Hirsch-Fye QMC meti§ddl) has dificulties in treat-
ing thex, y components of Hund’s coupling and the pair-hopping interac§dr2). How-
ever, this treatment has no physical ground, and violates the spin and orbital rotational
symmetries of the Hamiltonian. Our QMC method overcomes thdBeutiies.

Another important point in the present QMC method is that it is formulategdoeral
number of orbitalsvhile it has been diicult to formulate the conventional QMC method
for more than two-orbital systems in the presence of SU(2)-symmetric Hund’s coupling
(84.2, 4.5). Since there are many materials that involve more than two orbitals, such as
tyq Orbitals in ruthenates and cobaltates, the present method has a wide applicable scope.

With the method we examingnerant ferromagnetism in multiorbital systerg@hap.
5). Although importance of the orbital degrees of freedom, especially of Hund’s coupling,
on ferromagnetism has been discussed for a long time, most researches concentrate on the
ferromagnetidnsulator with an antiferro-orbital order in two-orbital models at quarter
filling. Our interest is in the role of Hund’s coupling iinerant ferromagnetism, which
is realized in transition metals and their compounds.

There are a large number of studies for itinerant ferromagnetism in the single-orbital
Hubbard model, where lattice structure is a crucial factor for stabilizing the ferromag-
netism. On the other hand, the importance of Hund’s coupling has been pointed out for
a long time, where most studies have been restricted to one-dimensional systems or to
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drastic approximations e.g., strong-coupling limit. Our method allows for taking account
of both lattice structure and Hund’s coupling at the same time. Thereby we discuss a long
standing issuewhether ferromagnetism in transition-metal-based materials is attributed
to either of lattice structure or Hund’s couplin(§5.3).

We also discuss the importance of spin-SU(2) symmetry of Hund’s coudmg)(
by comparing the result with SU(2)-type Hund’s coupling to that with Ising-type Hund’s
coupling, which has been extensively employed in studies for multiorbital systems.

In Chapter 6 we demonstrate that the present algorithm can be applied to the local
density approximation (LDA} DMFT for a three-orbital system, SRuQ,, where our
aim is to compare the spectra between SU(2)- and Ising-type Hund’s couplings, as well
as to show the applicability of the present method. Since the Ising treatment of Hund’s
coupling has also been adopted extensively in recent-LDMMFT studies, it is important
to know how a spectrum changes when we take into account the spin and orbital rota-
tional symmetries. We also discuss the importance of correlaffeste in SsRuQ,, by
comparing the calculated results with experimental data.
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Chapter 2

The multiorbital Hubbard model

2.1 Formulation

Theoretical study of multiorbital systems began to unfold with the proposal of the mul-
tiorbital Hubbard modélby Roth [58]. The model takes into account Hund'’s exchange
coupling as well as the intra- and interorbital Coulomb interactions. However, the original
model proposed by Roth omits some two-electron interactions such as the pair-hopping
interaction and violates the real-space rotational symmetdyoobits.

The first systematic derivation of the multiorbital Hubbard model was done by Ole
[90]. We consider a generdtelectron system such as a transition metal and a transition-
metal oxide. In such a material, relatively narrdvibands and more dispersiggp con-
duction bands cross the Fermi enekgy. In order to construct anfiective model for a
low-energy region aroundEg), we use Wannier functions as the b&sisle concentrate
on low-energy degrees of freedom, which cut across the Fermi level, and take account of
contributions from orbitals below or abo¥- only via the one-body potential for the
electrons in focus and via a screening of the Coulomb interaction between the electrons.

Then a second-quantized Hamiltonian for the low-energy electrons is

A= 3 [0 577+ Va0 i)
+ %Z f dxdx'y! (X)L, (X )Va(X = X )Wror (X W (X), (2.1)

wherey . (X) is the field operator for the electrons with a spinV,(x) is the one-body
potential composed of the ionic potentials, angx) is the electron-electron interaction
screened by other electrons. Althoughmay depend on spins of the two electrons in
general, that is, the screened Coulomb interaction may have aVforao - 0'V3, we
assume here that the spin-dependent pajtié small.

We emphasize that thaultiorbital model difers frommultibandmodels, where the unit cell includes
multiple atoms and intersite interactions are very weak. See the first footn§ite3i2.

2We assume that the Wannier functions in the low-energy region mainly consisorditals, with a
small mixture withs and p orbitals.
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Figure 2.1. Electron-electron interactions in multiorbital systems; (a) intraorbital
Coulomb interaction, (b)(c) interorbital Coulomb interactions, (d) spin-flip process, (e)
pair-hopping process.

To obtain a tight-binding model we expand the operatofx) in terms of the low-
energy Wannier orbitals at lattice siteshat is,

Va(X) = D $m(X)Cimo (2.2)

wheregin(X) is the wave function of therth Wannier orbital at site andc,,, the corre-
sponding annihilation operator.
Here we define the hopping integrtﬁ!T1 and the orbital-dependent on-site potential

Um @S
(1= 00) - by = [ )| 5T Vi o0 @29
and the intrasite-interaction integrals,
Unrs = [ a6 Valx = X) [ ()P
I = f dXdX’ i (X)Biry (X IV2(X = X' )Pim(X ) pir (X) (M 1Y),

Jom = f dXdX’ @i (X)Bim(X IV2(X = X' )Biny (X )iy (X) (M 1T).
(2.4)

We neglect the intersite interactions, which are expected to be much smaller than the
intrasite ones because of the locality of low-energy Wannier orbitals. We assume here-
after that the Wannier functions hotHorbital characters, namely the Wannier functions
approximate spherical harmonic functions. Then the intrasite-interaction integrals other
thanUmn, Jmm, @andJ; ., can be shown to be zero due to the axial symmetny ofbits.
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With the above parameters the second term in Eq. (2.1) is written as
Z Ummnianimi

+ Z [Ummnimu-nim’,—o- + (Umm - Jmm)nima-nim'zr]

i,m<m o

+ Z Jmmcnm iy lclmlcim’T
i,meny

+ Z J C:rm‘[qmiclm'lcim'T (2.5)
i,meeny

with Ny, = ci*mgcim(,. The first term expresses the Coulomb interaction between two elec-
trons in the same orbital with opposite spins [Fig. 2.1(a)]. The second term is the Coulomb
interaction between two electrons irfférent orbitals with opposite and parallel spins, in-
cluding thez component of Hund’s couplingl) [Fig. 2.1(b)(c)]. The third term is the
x andy components of Hund’s exchange, and is called the spin-flip term [Fig. 2.1(d)]. The
last term is the pair-hopping term, which expresses two-electron transfers from an orbital
to other orbitals [Fig. 2.1(e)].

We specifically consided orbitals in a cubic lattice. Due to crystal-fieltfects, the
five d orbitals split into three-fold degenerate orbitaig)(and two-fold degenerate or-
bitals (gy), so that we can usually construct a model for one of the sets of these degenerate
orbitals. Since the degenerate orbitals are equivalent, the Coulomb and exchange interac-
tions become orbitally independent, i.e.,

Um = U,
Um = U form=n,
Jm = Jyw=Jd form=n, (2.6)

whereJnw = J;,,, holds when the Wannier functions are taken to be real as dobitals.
Further, since the equivaledtorbitals are interchanged with each other by rotations in
real space, an additional condition,

U=U"+2J (2.7)
should hold. Typical values & andJ are

U~4-6¢eV,
J~05-07eV (2.8)
for 3d transition metals and transition-metal oxides, and somewhat smaller values (
1-3 eV) are expected forddransition-metal systems such as ruthenates. These values are

experimentally estimated from Auger-electron [91, 92] and photoemission spectroscopy
[93], and also theoretically from constrained LDA (local density approximation) calcu-
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lations [94]-[99], which is the LDA with a constraint on the numberdoélectrons at a
site3

Thus we end up with the multiorbital tight-binding Hubbard Hamiltonian,

|:| = |:|o + |:||nt’
Ho = tct - Ny
0o = CimeCimo HMmlimo-»
ij mmo imo
Hint = U Z Nimt Nimy + Z [U,nimanim’—a + (U, - J)nimanim’a]
i,m<ny,o
¥
+ J Z (CImT iy lC|mlC|m T + CImT Im\LC|m/lCim’T + H.C.). (2.9)

i,m<ny

The first term inHiy; is the intraorbital Coulomb interaction, and the second term the
interorbital Coulomb interactions including Ising) component of Hund’s coupling. The
last term is the spin-flip and pair-hopping interactions.

The spin-rotational invariance of the Hamiltonian (2.9) can be seen explicitly if we
rewrite the interaction part as

2
int - 2 Z [Z nim] _Znim - _J Z Nim Miny
- 2] Z Sim Sim/ g Z Zc;fmgcim’zr > (2-10)

i,m<ny |m¢m'

xSy SZ

whereni, = X, Nime- 1S the on-site number operator for orbltabndsm = (S,m, o)

is the on-site spin operator for orbital defined by

= Zc,ms 03¢Cmg fora=xyy,z o :Pauli matrix (2.11)

2.2 Hund's coupling

We stress here that the above derivation of the multiorbital Hubbard model (2.9) naturally
conduces to SU(2)-symmetric Hund'’s spin-spin coupling,

—23Sm - S (2.12)

However, Hund'’s coupling has often been treated as an Ising type,

im>=im’

J
~2382 &2 = -3 > 00 Mo T (2.13)

SRecent calculations [100, 101, 102] based ondhenitio random phase approximation [100, 103]
suggest substantially smaller (~ 2-4 eV) for 3 transition metals. So values bf for real materials are
still controversial.
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Figure 2.2: Level scheme for the two-electron energy states in multiorbital systems cou-
pled with SU(2)- or Ising-Hund'’s exchange interaction.

especially in quantum Monte Carlo studies, because the paﬂl(SfﬁnSfﬁn +8 S ),
in (2.12), which cannot be written as a density-density coupling, is intractable in the
conventional quantum Monte Carlo algorithm. Although the Ising treatment of Hund'’s
coupling has been widely employed, there is no physical basis to justify it.

In fact, the most fatal defect of this treatment is the neglect of quantum fluctuations.
For example, when we consider the two-electron states at g Sit¢(2) Hund lowers the

energy of the spin-triplet states,

Pl
C|mTC|m/T’
Pl
ClmlCIm '
1
_(ClmT iy T C|}m/TC|Iml) (m = n), (2.14)
\/_
compared with the singlet state,
\/_(CII’T‘IT | m/TCrmi) (m =), (2.15)

while Ising Hund lowers the doublet; .c! . andc] ¢ compared with the other dou-
blet == (cImT vy £ Civ:Chy) (Fig. 2.2). This causes not only quantitative but qualitative
dlfferences in the low-energy physics.

For example, Pruschke and Bulla showed that the criticality of Mott's metal-insulator
transition is diferent between SU(2) and Ising Hund’s couplings [104]. They investi-
gated ground-state property around Mott’s transition in the half-filled two-orbital Hubbard
model, using the dynamical mean-field theory (DMFH numerical renormalization-
group method with an orbitally-asymmetric truncation scheme §8e®). Their calcu-
lation for the mass renormalization factor and for the local spin moment indicates that the
Mott transition is first order in Ising case while it is continuous in SU(2) case (Fig. 2.3).

In Chapter 4 we develop a quantum Monte Carlo method which can handle the full
interactionH;;, including the spin-flip and pair-hopping interactions. With the method
we demonstrate that a significantfdrence exists for ferromagnetic instability between
Ising and SU(2) Hund’s couplings i§5.2. We also show a remarkableffdrence in
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Figure 2.3: The behavior of (a) the mass renormalization factor and of (b) the local mo-
ment againstU/W (U: intrasite Coulomb interactioWy: bandwidth) around Mott’s tran-
sition in the half-filled two-orbital Hubbard model with SU(2)(full) and Ising Hund’s
couplingsd = 0, 0.1, andU/4 (after Ref. [104]).

guasiparticle spectra between the two treatments for a three-orbital syss&ugrin
§6.4.1.
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Chapter 3

The dynamical mean-field theory

The dynamical mean-field theory (DMFT) is one of the most successful methods for in-

vestigating the physics of strongly correlated electron systems [18]. The DMFT gives the
exact electron self-energy in the limit of infinite spatial dimensions in a self-consistent

way. For finite dimensions, it gives an approximate solution which neglects spatial fluctu-
ations. However, it takes full account of temporal fluctuations, so that it becomes a good
approximation in the case where the spatial fluctuations are not important; for example,
systems with large coordination numbers.

In the DMFT, lattice models, such as the Hubbard model, are mapped onfteetive
impurity model which includes the same on-site interactions on an impurity site and an
infinite number of bath sites which are coupled to the impurity site through a hybridization
(hopping). The impurity model is solved in a self-consistent way. Although the impurity
problem is much more tractable than the original lattice model, it still requires a reliable
numerical solver.

We review the general formalism of the DMFT and its applications to the single- and
multiorbital Hubbard models i§3.1-3.3. Applications to real materials are reviewed in
§3.4. In§3.5 we compare various DMFT solvers developed so far.

3.1 General formalism

The partition functionZ of an electron system is written with the Grassmann variables,
which are a set of c-numbers with an anticommutation relation, as

Z = fl_[ Dc'Dges,
S = f ﬁdr(ch(T)aTci(r)—ﬁ[cT(T),c(T)] , (3.1)
0 i

whereH is the Hamiltonian of the systers, is the actiong is the inverse temperature,
andc’, c are the Grassmann variablgsDc means the integration over all the pathctf)
along the imaginary time.
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Integrating out all the degrees of freedom except for a representative(sdaied the
impurity), we can define theffective actiorSe; as

1

Salche] L f fOe oS
—€ = = Dc'Dcie, (3.2
Za 2 ) 11P

f Dc!Dcoe >,

In this section we describe the DMFT for the single-orbital Hubbard Hamiltonian,

H= tz ¢ Cip— Z Ny + U Z Mip N, (3.3)
i i

ijo

Lo

for simplicity, while more complex lattice fermion models can be discussed in a similar
way.

Metzner and Vollhardt [105] first pointed out that lattice fermion models have a non-
trivial limit of large spatial dimensiod — o, when one scales the transfeast ~ d-:.
In this limit, the fourth or higher order terms in the fermion operators in tiectve
actionSe; can be neglected, since they are higher orderin Hence we can write the
effective action in a form

B B 5
Sefr = —I) drsfO dr’ ZU: cl (D[Gor (T—7)] o (v) + UL drne (T)ney(7),  (3.4)

where po.(r—1')] 7! is the mean-field (Weiss) function that includes retardéetts from
local quantum fluctuations [20, 106, 107].

It is much easier to solve this impurity model than to solve the original model defined
on a lattice. We have several numerically exact solvers to the impurity problem: The
guantum Monte Carlo method and the exact diagonalization, etc. We will discuss these
methods in§3.5.

After we solve the impurity problem and obtain the electron self-energy, we come
back to the original lattice model. Because the electron self-eretggs nok depen-
dence in the infinite-dimension limit [108], Green’s function for the interacting electron
becomes

Gy (K, iwn) = {[0o(K, iwn)] ™t = Zo(iwn)} ™, (3.5)
wherew, = &7 is the Matsubara frequency for fermions, agpds the noninteracting
electron Green function,

: 1
g-(K,iwp) = ———. (3.6)
lwn +u— €g
The local Green function is then given by
. . D(e)
= k = - — g
Goss (o) = 3k [ s 37)
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whereD(e) denotes the noninteracting density of electron states in the infinite dimension.
When we consider the Bethe lattid®(¢) is a semielliptical function,

2
D(e) = %v 1- (%) : (3.8)

whereW is a bandwidth. For the hypercubic lattice we have a Gaussian function,

D(e) = é‘ﬁﬁ e@ (3.9)

Although this function has infinitely long tails, contributions from the high energy parts
are exponentially small. Hence, in Eq. (3.9) we definedféectve bandwidtW; as

Wer = 44 {foo €2D(€e)de, (3.10)

to give the same second moment as that for semielliptical density of states (3.8) with
W = Weff

We can reproduce the Weiss functignfrom the local Green function (3.7) and the
local self-energy,, (iwn) as

[gOU(iwn)]_l = [Goo,or(iwn)]_l + Xy (iwn). (3.11)

This equation provides a new Weiss function for tltieetive action (3.2) through the
Fourier transformation,

9o (7) = % > Gaoliwn)e ™. (3.12)

Egs. (3.4), (3.5), (3.7), (3.11), and (3.12) constitute a self-consistent loop, which can
be solved numerically.

- Susceptibilities

We can also calculate the two-particle Green functions in the limit of the infinite di-
mension. The two-particle Green functions are needed to calculate response functions
such as the charge, spin, orbital, and superconducting susceptibilities. Here we take for
example the spin susceptibilitigd(q, iv) (a, b = X, y, 2), which are calculated in Chap. 5.
Although we take a single-orbital model for simplicity in this section, the extension to
multiorbits is straightforward. The charge, orbital, and superconducting susceptibilities
can be calculated in a similar way.

The spin susceptibility on a lattice is defined by

B B
)(ab(q,iv)zl' f dr f dr/ (T, Sy(1)S (v )e”™™ (3.13)
B Jo 0
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with Sg(7) = % Y Kes cLsa"ggck+qg. With the two-particle Green functions,

s s g o
x(q,iv; K iw; K,iw') = fﬂ dry f dr, f drs f dr e llwmr-orareta=(+v)r]
0 0 0 0

1 .
x 7 ; o' (TeGy o, (M0, (72)C)(T3)Ck g (72)), (3.14)
defined on a lattice, thezcomponent of the spin susceptibility is written as

z i 1 iy, N PN
YA, iv) :EZZX(q"V’ K,iw; K, iw). (3.15)
ww kk
We calculate the two-particle Green functions through the Bethe-Salpeter equation,
X N9 iv; K iw; K, iw) = xo' (9, iv; K, iw; K, i) = T(q,iv; K, iw; K, i), (3.16)

whereyy is the irreducible lattice Green function defined by
ﬁZ
xo(a,iv; Kiw; K, iw') = ‘Z(skk’éww’ ZGJ(k + 0, 1w+ iv)Gy (K, iw), (3.17)

andr is the vertex function.
In the limit of the infinite dimension, the vertex function can be replaced with the local
one [108, 109],

I'(q,iv; K, iw; K, iw") =T(iv;iw,iw) ZXE,%,o(iV; lw,iw) —/\(&(iv; w,iw), (3.18)

whereyiqoco IS the irreducible local Green function
2
XIoc,O(iV; lw, iw,) = _%5ww’ Z GIOC,(}'(iw + iV)Gloc,o-(i‘U)a (3-19)

andyqc is defined by

B B B B ) , ,
)(Ioc(iV; iw, ia)') = f dry f dr, f drs f dT4e—l[(w+v)‘rl—w‘rz+w 73—(w' +v)14]
0 0 0 0

1 . N
x 7 Z 70 (T-CL(r1)C(72)CL (73)Cor (72)). (3.20)

Giocr(iw) andyoc(iv; iw, iw”) are the one- and two-particle Green functions, respectively,
which are numerically calculated for the impurity model (3.2).

3.2 Application to the single-orbital Hubbard model

There exist a huge number of applications of the DMFT not only to the Hubbard model,
but to a variety of models such as the periodic Anderson model [110]-[116], the Hubbard-
Holstein model [117]-[123], etc. However, we only review the results for the single-
orbital Hubbard model in this section, and those for the multiorbital Hubbard model in
the next section.
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Figure 3.1:U dependence of the mass renormalization faztor the Bethe(hypercubic)
lattice with W(Wg)=4, calculated by Bulla with the DMFINRG method (after
Ref. [132]).

3.2.1 Mott’s transition

The first prominent result obtained with the DMFT is the description of Mott’s metal-
insulator transition in the single-orbital Hubbard model [14, 18, 20, 21, 22, 24, 26, 27],
[124]-[139]. As mentioned in Chap. 1 the Mott transition has been a challenge in the
field of correlated electron systems. The DMFT provided the first unified framework for
describing the transition from both metallic and insulating sides.

From the metallic side the transition is characterized by the disappearance of the mass
renormalization factor, i.e., the divergence of the quasipartiffecttve mass. Within
the DMFT the renormalization factor continuously approaches to zetbiasncreased
from weak-coupling region, and it vanishes at a critical couplihg (Fig. 3.1), which
is estimated to be 1.47W(1.45W) at T = O for the Bethe(hypercubic) lattice [132].

On the other hand an insulating solution is found abdve~ 1.2W(< U,), so that the
metallic and insulating solutions coexist in the ratgje < U < Uc,.

Figure 3.2 is thdJ — T phase diagram of the single-orbital Hubbard model at half
filling obtained by DMFT studies, where magnetic orders are excluded. We can see that
the two linesU¢(T) andU(T) merge at a critical end pointJ¢, T.). The first-order
transition lineU*(T) below T, merges again witkl»(T) line atT = 0, which means that
the transition is of second orderdt= 0.

We can also study the Mott transition in terms of the density of electron states. Figure
3.3 is the density of state®(w) obtained with the DMFT+ numerical renormalization-
group (NRG) method by Bulla [132]. In the metallic region close to the Mott transition
(U < Uy), there is a three peak structure: The broad peaks at arouad+0.7W are
considered to be a precursor of the lower and upper Hubbard bands in terms of the Hub-
bard picture [10], while the sharp quasiparticle peak at O is interpreted as a Kondo
resonance peak, which is commonly seen in the Anderson models at low temperatures.
As U increases, the quasiparticle peak becomes narrower, keeping the Agight 0)
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Figure 3.2: Phase diagram of the single-orbital Hubbard model at half-filling, where
magnetic orders are excluded. The squares and crosses, calculated with thee BIMFT
method, mark the coexistence boundatigg(T), U(T) and the first-order transition
line U*(T), respectively. Diamonds at = 0 denote the DMFFNRG results. Curves are
guide to the eye. (From Ref. [136].)

unchanged, to vanish at a critical couplidg,, where the density of states splits into the
lower and upper Hubbard bands.

The filling-control Mott transition has also been studied by a number of other authors
[14], [18]-[28]. For the two-dimensional Hubbard model, the ground-state phase dia-
gram on theJ — u (u: chemical potential) plane was obtained by Watanabe and Imada
[28] with the path-integral renormalization-group method [29] $&&.1). For the two-
dimensional model, Furukawa and Imada [19] found that the charge compressibility di-
verges at the zero temperature transition paifT = 0). In the infinite dimension,
Kotliar et al. [27] found a divergence of the charge compressibility at the critical end
point U, T.). They discussed the Qe- vy transition in this light.

3.2.2 Ferromagnetism

Ferromagnetism has been another subject of DMFT studies for the single-orbital Hubbard
model. Since the DMFT can take account of electron correlations exactly in the infinite
dimensional limit, the interest is whether ferromagnetism is realized in the single-orbital
model with strong electron correlations.

For the hypercubic lattice no ferromagnetism has been found except for the large
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Figure 3.3: Change of the density of stafgs)) around Mott’s transition, calculated by
Bulla with the DMFT+NRG method (after Ref. [132]).

U limit [22, 124, 140, 141]. Ulmke, on the other hand, examined a face-centered cu-
bic (fcc) lattice, which has an asymmetric density of states [142]. He showed, with the
DMFT+QMC, that metallic ferromagnetism appears for intermedigte W) at low tem-
peratures in a rather wide range of fillingZ0s n < 0.9). This reminds us of the result
obtained by Aritaet al. [143], who showed, with the fluctuation-exchange and the two-
particle self-consistent approximations in the weak coupling regime for three-dimensional
lattices, that fcc lattices are favorable for ferromagnetism as compared to simple cubic and
body-centered cubic (bcc) lattices.

We focus on this topic i§5.1.2.

3.2.3 Superconductivity

Superconductivity is also an important and intriguing issue of electron correlation. Since
the DMFT is a mapping on a single-site problem, it cannot treat anisotropic pairings.
There have been, however, a variety of generalizations of the DMFT to include spatial
correlations [26], [50], [144]-[154].

The d-wave superconductivity in the two-dimensional (2D) Hubbard model, which
is a simple model for higi- cuprates, has been studied with cluster extensions of the
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DMFT such as the dynamical cluster approximation (DCA) [49, 50, 144, 146, 155]. The
DCA takes account of thke dependence of the self-energy by mapping the original lattice
problem onto a periodic cluster of sidg. Maier et al. [49] found a finite-temperature
transition to thed,._j.-wave superconductivity in the 2D Hubbard model on a square
lattice, using DCA calculations up th. = 26. Because in 2D systems the Mermin-
Wagner theorem [51] precludes long-range orders with a broken continuous symmetry at
finite temperatures, the superconducting transition, if it still exists ifNthe> oo limit, is
expected to be a Kosterlitz-Thouless transition [52]. The relevance of the DCA result to
the Kosterlitz-Thouless transition was discussed by Metiex. [49]

3.3 Application to the multiorbital Hubbard model

There are also a large number of DMFT studies for multiorbital systems. However, there
has been a discrepancy in the studied models, that is, Hund’s exchange and the pair-
hopping interactions have been treateffledently by authors. It is mainly due to the tech-
nical reason that the conventional Hirsch-Fye QMC method, which is a standard solver for
the multiorbital DMFT, has diiculties in treating these interactions, while other solvers
like the exact diagonalization (ED) or the QMC algorithm proposed by the present authors
[156] can handle these interactions. We review these studies, paying a special attention to
the treatment of the Hund exchange and pair-hopping interactions.

3.3.1 Mott’s transition

The first application of the DMFT to multiorbital systems was done by Rozenberg [157].
He investigated, with the DMFRIQMC, the two-fold degenerate Hubbard model on the
Bethe lattice folJ = U’ andJ = 0 at finite temperatures, and found the first-order metal-
insulator transitions at integer fillinga & 1, 2, 3, n: density of electrons) and a relation
Uc(n=2) > Ug(n = 1) = U(n = 3). For this type of interactions (i.4J, = U’ andJ = 0),
the critical couplingU. at half filling (n = M) increases as the orbital degeneratys
increased [158]-[162]. In real-electron systems, however, the situation would be more
complex since the eadhorbital has diferent dispersions. The Mott transition for more
realistic dispersions, which are constructed from the doubly degerggateitals and the
triply degeneraté,y orbitals on simple cubic and body-centered cubic lattices in three di-
mensions, has been discussed by Miura and Fujiwara [163] with the D\IkeTiterative
perturbation theory (IPT). They concluded that the critldadlepends significantly on the
lattice structure and the shape of the orbitals. The relatias @ndd-orbital degeneracy
M in real materials is still an open question.

The situation is completely changed from tde= U’ model when we take Hund'’s
coupling into accountJ > 0). In order to see thefiect of Hund’s coupling the multior-
bital Hubbard model without the spin-flip and pair-hopping interactions (in other words,

~

the model with Ising-type Hund’s coupling2JSiZm§iZm,, see§2.2) has been studied ex-

tensively [159], [164]-[169]. In these studies, the Hirsch-Fye QMC method, which has
difficulties in treating SU(2) Hund’s coupling2JS, - S and the pair-hopping interac-
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tion, has mainly been employed as a DMFT solver. The criticédr the Mott transition
is considerably decreased when the Ising-type Hund coupling is introduced [159]. The
spin and orbital rotational symmetries have been destroyed in these studies.
Kogaet al. [170] investigated a two-orbital model with SU(2) Hund'’s coupling but
without the pair-hopping interaction by means of the DMED method. They discussed
the stability of a metallic phase in the model in terms of orbital fluctuations: For shmall
(i.e.,U ~ U’) a large orbital fluctuation stabilizes metallic states while Hund’s coupling
suppresses the fluctuation and stabilizes an insulating s@e.et al. [171] studied
the same model, using the linearized DMFT method [133], to show that the inclusion of
(SU(2)-)Hund’s exchange coupling changes the nature of the Mott transitibn=a0
from continuous (al = 0) to discontinuous one (faf > 0). The same conclusion was
obtained by Inabat al. [162] for the two-orbital model with SU(2) Hund'’s coupling and
the pair-hopping interaction (Fig. 3.4), by means of the self-energy-functional approach
[151], which is based on a variational principle for the Luttinger-Ward functional.
Pruschke and Bulla [104] extended the numerical renormalization-group method to
two orbits, and applied it to the DMFT. Although their algorithm can treat the spin-flip
and pair-hopping interactions, an asymmetric truncation for orbital degrees of freedom,
that is, a sequential addition of each orbital space, is needed to repress the increase of the
Hilbert space in the iterative diagonalizations. As is describef?i@, they showed that
the Mott transition at ground state is first order for Ising Hund’s coupling while second
order for SU(2) Hund’s coupling. This result for SU(2) Hund’s coupling conflicts with
Inaba’s result [162], which suggests a first-order transition. The discrepancy may be due
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curves are guides to the eye. Inset: Temperature dependence of the inverse susceptibilities
of 3AE pairing forn = 1.8 and 2.0. Dashed curves are extrapolations. (From Ref. [156].)

to the diferent parameterizations for the interactions between the two calculations, while
it requires further studies.

3.3.2 Ferromagnetism

Ferromagnetism in multiorbital systems has also been explored in the DMFT.

Held and Vollhardt [164] found an itinerant ferromagnetism for the Bethe lattice in
the presence of Ising Hund’s coupling. However, the absence of the spin and orbital rota-
tional symmetries in this calculation may result in an overestimation of the ferromagnetic
instability, as elaborated i§b.2.

Momoi and Kubo [172] applied the DMFAED method to the two-orbital Hubbard
Hamiltonian including SU(2) Hund’s coupling and the pair-hopping interaction. They in-
vestigated the hypercubic lattice around quarter filling (1) and found a ferromagnetic
ground state in the insulating phasenat 1 and in the electron-doped casenat 1.2.

We shall discuss the ferromagnetism in detaitl.3.
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3.3.3 Superconductivity

Although the single-site nature of the DMFT prohibits to investigate anisotropic pairings
like p andd waves, we can still discuss a variety of possible pairings in multiorbital
systems with the DMFT.

Han [173] and Sakaat al. [156] considered the symmetry of Cooper pairs with respect
to the orbital degrees of freedom. They studgedave pairing symmetries in the =
oo two-orbital degenerate Hubbard model on the Bethe [173] and the hypercubic [156]
lattices, developing dlierent QMC schemes (described§a.2) to take full account of
Hund’s coupling and the pair-hopping interaction. Since the total symmetry in this case
consists of spi orbital ® frequency,

Notation  Spin Orbital Frequency
1SE singlet  symmetric even
3AE triplet antisymmetric even
1AO0  singlet antisymmetric odd
3S0O triplet symmetric odd

are the possibilities. The pairs that are formed acrofierént orbitals are especially
interesting. The orbital-symmetric pairs are

S C17Cqy + C1Cyy,
Sb . C1pCq — Cx1Cyy, (321)
S C11Cy; + C1Cyy,

wherecy,¢;; andc,,c,; are combined into bonding and antibonding states due to the pair-
hopping interaction, while the orbital-antisymmetric pairs are

A C11Co1,

C1,Coy,
C17Cp — C1Cyy, (322)

which are triply degenerate.

The calculated superconducting susceptibilities (Fig. 3.5) indicate that spingriplet
orbital-antisymmetri@even-frequency pairing is favored in the presence of Hund’s cou-
pling, and further the susceptibility diverges at a finite temperature (Fig. 3.5, inset).

However, we should compare this result to that for anisotropic pairings, since in the
single-orbital systems a superconductivity from electron-electron repulsions is dominant
only when the gap function has nodes in the Brillouin zone. Anisotropic pairings can be
treated in principle with the cluster DMFT methods, although the calculation would be
too heavy to implement at present.
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Figure 3.6: A schematic representation of the orbital-selective Mott transition. In
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3.3.4 Orbital-selective Mott’s transition

Another topic specific to multiorbital systems is the orbital selective Mott transition. The
phenomenon was first proposed by Anisineiwal. [83] to explain an anomalous phase

in Ca_4SrRuQy, where strong antiferromagnetic correlations are observed in the metal-
lic region of Q2 < x < 0.4 [79] (see§1.3.3). Considering that the material ist;g
three-orbital system consisting of one wide band and two narrow bands, Aniginabv
proposed that the wide band has metallic properties while the narrow bands are insulat-
ing with the antiferromagnetic correlation (Fig. 3.6). They confirmed this idea with the
LDA +DMFT calculation, using the non-crossing approximation as the impurity solver.

After Anisimov’s proposal Liebsch [165] claimed a single Mott transition in mul-
tiorbital systems, that is, the absence of the orbital-selective Mott transition, based on
the DMFT+iterative perturbation theory and the DMFQMC study for the two-orbital
Hubbard model with one wide and one narrow bands, where he ignored the spin-flip
and pair-hopping interactions. Kogd al. [174] took account of these interactions by
means of the DMFFexact diagonalization (ED) method, and showed the existence of
the orbital-selective Mott phase, in contrast to Liebsch’s suggestion. Further studies on
this system has been carried over by many authors [166, 167, 168], [175]-[179]. Knecht
et al [166] showed, with a high-precision DMFDQMC simulation, the existence of
two distinct Mott transitions even for Ising Hund’s coupling, where the two transitions
were not discriminated in the accuracy of Liebsch’s calculation [165]. Recently a non-
Fermi-liquid behavior in the orbital-selective Mott phase was discovered for Ising Hund'’s
coupling by Biermanret al. [168] and the problem attracts renewed interests [169].

We note that, despite the evidence for the orbital-selective Mott transitions in the
two-orbital Hubbard model with unequal bandwidths, it is still controversial that the tran-
sitions really occur in Ca,SrKRuQ,. Indeed, there have been some experiments that
conflict with the orbital-selective Mott picture, as describe@1n3.3. Hence more real-
istic calculations are clearly required for this system.

For such a purpose the multiorbital DMFT has been playing an important role, through
the so-called local density approximatieDMFT method. We review this method in the
next section.
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3.4 The LDA+DMFT method

One of the most notable achievements in the quantum chemistry and condensed-matter
physics is the density functional theory [180, 181], which has enabled us to calculate elec-
tronic structure of real materials from first principles. In order to calculate the exchange-
correlation potential, which includes the exchange interaction and correlatiectss
the local density approximation (LDA) has been successfully employed in the density
functional theory for materials such as light metals and semiconductors. However, the
LDA cannot reproduce the electronic structure of strongly-correlated electron systems
such as transition-metal oxides; for example, Lali®©a Mott insulator experimentally
[182, 183], but a metal in the LDA calculation [184]. This is because the LDA does not
take account of the strong correlation of localizkelectrons in these materials.

Much efort has been made to incorporate theffeats intoab initio calculations
[181, 185, 186]. A promising approach is to combine the first principles calculations with
tight-binding-model calculations which can treat electron correlations [186, 187]. The
LDA+DMFT method [188, 189, 190] is one of such methods. In this method the tight-
binding model, which is solved with the DMFT, is constructed by the LDA calculation.
The multiorbital Hubbard model (2.9) is usually adopted for this purpose, whdug, J,
and the band structure (that is, the one-electron part of the Hamiltonian) are determined by
the LDA. The DMFT result can produce a revised electron density for the next input for
the LDA calculation. This gives a self-consistent loop for the LDA and the DMFT calcu-
lations, although, in practice, most LBAMFT calculations reported heretofore, except
for Refs. [191]-[196], do not feedback the DMFT result to the LDA. The ILEDMFT
method is promising because the DMFT treats strong correlations, so that it can handle
the Mott metal-insulator transition, in particular.
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Figure 3.8: Comparison of the one-electron spectra for Srat@ CaVQ obtained from
a photoemission experiment (left panel) [202], an X-ray absorption experiment (right
panel) [200] and an LDADMFT(+QMC) calculation [202] (after Ref. [202]).

The LDA+DMFT was started by Anisimoet al. with an application to the doped
Mott insulator La_,SrTiO3 [188]. The result forx = 0.06 agrees well with the exper-
imentally obtained photoemission spectra [182], which is not reproduced by the LDA
alone (Fig. 3.7 [197]. See also Refs. [198, 199]). Also, the insulating behavior of the
above mentioned LaTi9was reproduced with an LDADMFT calculation [199].

Various vanadium compounds have been investigated with thet L DIMFT method.
Especially, a strongly correlated metal; SCaVO3; has attracted much attention be-
cause of its simple @ electronic configuration. The photoemission spectra (Fig. 3.8,
left panel), below the Fermi enerdsi, of this material have a pronounced quasiparticle
peak at arouné&r and a lower Hubbard peak at abedt5 eV, while the X-ray absorption
spectra (Fig. 3.8, right panel), aboig, have a quasiparticle peak at aroud and an
upper Hubbard peak at about 2.5 eV [182, 200, 201, 202]. The spectra calculated with
the LDA+DMFT reproduce well this spectral structure [199], [201]-[204]. The mech-
anism of the Mott metal-insulator transition in,®; [130, 205, 206, 207], V©[196]
and BaV$g [204, 208], and a heavy-fermion behavior in Li®, [209] have also been
discussed within this framework.

Lichtensteiret al. [210] investigated ferromagnetic Fe and Ni in this scheme, and ob-
tained a Curie temperatures which is close to, but somewhat higher than, the experimental
results. We discuss their results§ib.2.

Yamasakiet al. [211] investigated the pressure-induced insulator-to-metal transition
in LaMnQs. They suggested that the transition is not a Mott-Hubbard type, but is caused
by aneg, orbital splitting due to the interplay of a Jahn-Teller distortion and the Coulomb
interaction.

Liebsch and Lichtenstein [212] studied the normal state of the spin-triplet supercon-
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ductor SgRuQ, (see§l.3) with this method, where they discussé@ets of Hund’s cou-

pling on the normal-state electron spectra. Recently, Pche#tiak[195] reinvestigated

this material, comparing the LDADMFT result with photoemission and X-ray absorp-

tion experiments, and concluded the presence of strong electron correlations in this mate-
rial. In §6.1.2 we focus on these applications. For Ca-dopgRBp, the LDA+DMFT

study [83] fuelled intensive studies on the orbital-selective Mott transition, as described
in the previous section.

Many other intriguing transition-metal compounds have been explored with the-LDA
DMFT so far; a half-metallic ferromagnet Cs@nd a dilute ferromagnetic semiconductor
Ga,._xMn,As by Cracoet al. [213], and the host material of a hydrated superconductor
Nag3Co0; by Ishidaet al. [53, 214], among others. The Mott insulating state in alkali-
metal loaded zeolites was also studied by Aetal. [215].

The LDA+DMFT has also been applied teelectron systems. For example, Savrasov
et al. [191] suggested, by means of the self-consistent tDMFT method, that the vol-
ume change between andé-phases in the metallic plutonium is originated from electron
correlations. Helet al. [192] discussed the Geto-a volume collapse transition in terms
of the volume dependence of the correlation energy (see also Ref. [216].) McMahan [193]
extended this argument to other lanthanides, Pr and Nd.

Despite these successes, there are some obvious defects in tRdMMA method.

First, the DMFT, due to its mean-field nature, cannot treat spatial anisotropy, or neglects
spatial fluctuations. To improve this point, Sun and Kotliar [148], Zein and Antropov
[149], and Biermanret al. [150] proposed to combine the GW method, which ap-
proximates the electron self-energy with a product of the Green function and a screened
Coulomb interaction, and the DMFT, instead of the LEBBMFT. In this scheme we can
expect that the spatial fluctuations at the RPA (random phase approximation) level are in-
corporated. Another natural solution to this problem is to adopt the cluster-DMFT meth-
ods [50, 217] (se¢3.2.3). However, because most strongly-correlated materials have the
orbital degrees of freedom, we must solve a multiorbital cluster problem in these cases.
The Hirsch-Fye QMC method, which has been a standard and the only exact solver for the
single-orbital cluster problems, can handle only very small clusters in multiorbital cases;
four sites with two orbitals may be the limit of computation, when we include full Hund’s
coupling. Since cluster-DMFT methodsf&ar finite-size &ects for a small cluster size

[49], some breakthrough is required to proceed in this direction.

Second flaw in the existing LDADMFT studies are the following: Since most LBA
DMFT studies have employed the Hirsch-Fye QMC method as the impurity solver, the
spin-flip and the pair-hopping interactions in the Hamiltonian (2.9) have been neglected
so far. This violation of the spin and orbital rotational symmetries of the Hamiltonian may
lead to wrong conclusions.

We develop in§4.5 a numerically exact quantum Monte Carlo method preserving
these rotational symmetries. §6.4.1 we apply the algorithm to the LBAOMFT cal-
culation for SgRuQy, and show that qualitative flierences do indeed exist between the
guasiparticle spectra obtained with the conventional Hirsch-Fye QMC algorithm (for Ising
Hund’s coupling ) and those with our new algorithm (for full Hund’s coupling).
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3.5 Comparison of impurity solvers

To extend applicability of the DMFT various solvers have been developed for the impurity
models. These solvers have their pros and cons, and are accordingly favorafilerentli
situations.

The iterative perturbation theory [107, 161, 218, 219] and the non-crossing approxi-
mation [22, 125, 220] solve the impurity problem approximately, assuming some analytic
form for the self-energy. These methods are computationally inexpensive, and are conve-
niently applied to large number of orbits, although they cannot treat electron correlations
accurately. The linearized DMFT [133] has an analytic solution of the self-consistent loop
but it can treat only the vicinity of Mott’s transition.

There are some numerically exaatethods such as the exact diagonalization (ED),
the Hirsch-Fye quantum Monte Carlo (HFQMC) method, and the numerical renormaliza-
tion-group (NRG) method.

The ED [128] maps thefiective impurity problem (3.2) onto the Anderson impurity
Hamiltonian [see Eq. (4.1) below] with finite number of conduction bath orbitals. The
method becomes exact in the limit of large number of the bath orbitals. The ED has
the advantage that it can easily handle all the multiorbital interactions including Hund'’s
exchange and the pair-hopping term. However, it cannot treat large numbers of bath or-
bitals because the dimension of the Hilbert space increases exponentially with the number
of bath orbitals. The orbital degree of freedom at impurity site further increases the di-
mension and decreases the number of tractable bath orbitals (in practice 4-6 bath sites
are taken for two-orbital impurity models). Therefore the DMIED studies have been
usually limited to two-orbital systems.

The NRG method [132] is also powerful far = O or very low temperatures. The
method discretizes conduction-bath electron’s space on a logarithmic energy scale, and
takes contributions from lower-energy parts through recursive diagonalizations. It be-
comes exact in the limit of fine discretization. Although the NRG can take account of
infinite number of bath sites as opposed to the ED, it hasfi@dlty in treating large de-
grees of freedom at the impurity site because of increasing size of the Hilbert space. So
it has been mainly applied to the single-orbital DMFT. An extension to two orbitals was
recently made by Pruschke and Bulla [104], but an asymmetric truncation with respect

Solver | Spectrum | Temperature 3 orbitals SuU(2) Hund
ED discrete T~0 intractable tractable
NRG continuous T~0 intractable | possible [104]
HFQMC | continuous| highT or | possible only possible
T =01[225] | for Ising Hund| [156, 173]

Table 3.1: Comparison of numerically exact impurity solvers.

IHere the word ‘numerically exact’ means that the method becomes exact in some limit which is inde-

pendent of the parameters in the Hamiltonian.
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to the orbital degrees of freedom has to be done to treat SU(2) Hund’s coupling and the
pair-hopping interaction.

The HFQMC method [221, 222, 223] decomposes the original many-body system into
a sum of one-body systems with the Trotter decomposition and the Hubbard-Stratonovich
transformation, and samples the one-body systems according to the stochastic weight (for
detail, see§ 4.1). The method becomes exact in the limit of large Trotter number. The
HFQMC can handle not only two but more orbitals in contrast to the ED and the NRG,
and also produces continuous spectra. The former is important since there are various
intriguing systems having three or more orbitals, espectgfiglectron transition-metal
oxides exemplified by the spin-triplet superconducteiRsIO, [2, 78]. The latter (spec-
trum) is crucial for comparing results with experiments like photoemission spectroscopy.
For these reasons the HFQMC method has been by far the most widely employed impurity
solver, especially for the LDADMFT method.

The HFQMC has, however, somefttiulties. First, it is dificult to reach low tem-
peratures because lower temperatures require larger Trotter time-discretization numbers,
which results in much heavier computations. Second, it requires some contrivance to
treat two-body interactions that cannot be written in a density-density form, such as the
spin-flip and pair-hopping interactions in the multiorbital Hubbard Hamiltonian (2.9).
Moreover, even if we succeed in incorporating these interactions into the HFQMC, there
appears the so-called negative sign problem, which further makes low-temperature studies
difficult.

For these reasons, in most HFQMC studiiesluding the LDA+ DMFT calculations,
only the Ising £ component of Hund’s exchange coupling has been considered, with
the spin-flip &k andy) and pair-hopping terms neglected. This treatment is of course
unphysical: It violates the spin and orbital rotational symmetries of the Hamiltonian (2.9).

In order to overcome these adversities in the HFQMC, we develop in the next chap-
ter a new QMC method which can treat the rotationally symmetric Hamiltonian (2.9).
The method introduced i§4.5 greatly suppresses the sign problem compared with the
HFQMC and can treat more than two orbital systems.

2Exceptions are Refs. [156, 173, 175] and [176].
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Chapter 4

The auxiliary-field quantum Monte
Carlo methods

We propose an auxiliary-field quantum Monte Carlo (QMC) method for multiorbital sys-
tems, especially as a solver for the multiorbital DMFT. The algorithm is based on the
Trotter decomposition and a series expansion.

Before embarking on our algorithm we first review the conventional Hirsch-Fye QMC
method for the single-orbital Anderson impurity model§a.1. Next we extend the
Hirsch-Fye algorithm to multiorbital models §4.2, and discuss the sign problem, caused
by the spin-flip and pair-hopping interactions, §4.3. In §4.4 recent developments in
QMC methods based on series expansions are reviewed. Our algorithm is introduced in
§4.5 and its applicable scope is discusse§4r®6.

4.1 The Hirsch-Fye algorithm for the single-orbital case

The Hirsch-Fye QMC method [221, 222, 223] is a well-established, numerically exact
solver for the Anderson impurity problem, and it has also been the most widely-used
solver for the DMFT [18]. The key ingredients of this method are the Trotter decomposi-
tion and the discrete auxiliary-field decoupling (the Hubbard-Stratonovich transformation
[221]).

- General formalism
We start with the single-orbital Anderson impurity model,

Ham = Ho + Hint,

Ho = i Z €pChyCpor + i Z‘J(Vpcg(,cd(r +H.c)+ (ed + %) Z’: Ndors

p=1 o p=1 o

~ Ngy + Ngy
Hinw =U (ndTndL - )

2

wherep = 1, .., n. represent the conduction-bath orbitalgepresents the impurity site,
andep andey are the corresponding one-electron energies.

(4.2)
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The partition function of this system is
Z = Tre#am, (4.2)

In order to implement a numerical calculation, the imaginary time intervaB]@s dis-
cretized intoL time slices,

7 o= ldr(l=1,..,L)
4t = BJL. )

With the Trotter decomposition, the partition function (4.2) becomes

L L
Z=Tr| [edtortin) = Tr | | eHoerd™in 1 O(47?), (4.4)
=1 =1

where the exponential of the original Hamiltoni!ﬁl[a,M was decoupled into a product of
non-interacting par¢“™ and interacting paHt,

Hirsch and Fye [221, 222] applied the discrete Hubbard-Stratonovich transformation,

galmn—3(m+n,)]

{ 32sre ) (a>0) 45)

JrtetmnhE (a<0)

A

|n(e% + Ve - 1),

to the interacting part at every time slice. Then the partition function (4.2) is written as
Z = 5 ), Zaa (4.6)

where
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Ho = > Hg. (4.7)

The above equations are interpreted as a decomposition of the many-patrticle problem into
a sum of single-particle problems, which are specified by the auxiliary felds, s.

After this decomposition, we can obtain the expectation value of an arbitrary opérator

as

.....

1 Z < Z A
<A> _ = Z S1,...,SL <A>sl o = Zsl ..... s. &St S|_< >51 ..... S|_’ (4.8)
SL



.....

of s, ..., .
If we were to take the sum completely, we had to calculate the expectation valies of
in 2" single-particle systems. That is impossible in actuality wheéskes a large number.

.....

, (4.9)

where}’ oy denotes the sum over Monte Carlo samples.

- Single-particle Green’s function

To carry out the DMFT self-consistency cycle we evaluate Green'’s fun@tign r’) =
(T.c.(1)c. (7)) in the Monte Carlo sampling, whefg is the time ordering operator. Ap-
plying the formula (4.8) we can see that

, 1 Z .. ,
GG’(T’T) = E Z & SLgSl,---,SL;O'(T’T )’

Osy....s0 (T T') (TeCo(T)CL(T sy (4.10)

wheregs, s .- IS the Green function of a noninteracting particle in the time-dependent
external potentias, ..., S .

.....

with each other by ah x L matrix equation [222, 223],

g = g+(@g-1E’e -1y,
() = &6,
@i = 9w 7)), (4.11)

where we abbreviateg = g, .- andg = 0s,...5 00 EtC. FOrs;=s,=..=s5.= 0 we have
any auxiliary-field configuration from the noninteracting Green funcg@nSo”ﬁ/e can
obtain the Green functio® directly from the Weiss functiogy, without determining the
parameters,, V,, andey in the Hamiltonian (4.1).

4.2 Extension to multiorbital systems

Sakaiet al. [156] extended the Hirsch-Fye algorithm to multiorbital Anderson models
that include the spin-flip and pair-hopping terms,

A

Hine = Hy + Hj,
Hy =U Z NNy + Z [U'nmeny—o + (U = DNy Do |
m m<m,o
Hy =J Z (C;qTC:mleCrTYT + C;Tc;icmcm +H.c), (4.12)
m<nY
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where the main contrivance is in the auxiliary-field decoupling of the spin-flip and pair-
hopping interaction$l; [156]. Although there have been many DMFPMC studies
for multiorbital systems, including the LDADMFT calculations, all of them before
Ref. [156, 173] had neglected the spin-flip and pair-hopping interackigrizecause the
Hubbard-Stratonovich transformation (4.5) is only applicable for the density-density in-
teractionHy while the practical decoupling formula fét; had been lacking. As men-
tioned in§2.2 the neglect ofi; may give rise to unphysical results because of the absence
of the spin and orbital rotational symmetries, so that a scheme to takehas been de-
sired.

There had been severdtarts in this direction.

- Held and Vollhardt (1998)
Held and Vollhardt [164] attempted the following transformation,

+1
JArcicocies 1 so/(C co—Clicy)
A A (S %6 C2=C36)
22,
a = Jar, (4.13)

for H, term. However, this type of transformation has serious problems: First, in order to
apply this transformation te“™, we must decompose

g™ = exp[-41J Z (C%mTChCmLCmT + CLTC;quLCmT)] (4.14)
menY

into a product of the exponentials of the form (4.13), i.e.,

1—[ exp-4rIc, .cl, CmCmr) eXpEATIC Cl vy Crry). (4.15)

nzang

This decomposition not only causes an error of the o@{gir?), which is summed up into
O(47) by collecting over the imaginary time, but violates the equality of the spins and of
the orbitals in the interaction terms. Second, even if we allow the above decomposition,
the implementation of this algorithm encounters a severe sign problem, as pointed by
Held and Vollhardt [164]. Third, this transformation requires four auxiliary fields for
each two-orbital part ofi;, which results in a heavy computation.

- Motome and Imada (1997)

A more practical way to treat these interactions was developed by Motome and Imada
[224]. They wrote the two-body interaction Hamiltonian of #eorbital Hubbard model
in a quadratic form,

A

Hint

U’ J < )
S (=MP+5 > A+ (U =U) ) Moy
m<m’ m

A

A

> (G Cotr + Chy ), (4.16)
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whereU andU’ are the intra- and interorbital Coulomb interactions, dnslHund’s rule
coupling. As mentioned i§2.1,U, U” andJ are related by’ = U - 2J.
Motome and Imada applied the general formula for an arbitrary opefator

+1
_of2 Y s vaf 4
e — Z_gsm o4,
24 +O(47%)
a > 0,
V6
’}/| = 1+ ?l,

m

\2(3- Val), (4.17)

to the quadratic terms in the Hamiltonian (4.16).

An important point in this method is that, when there exists an electron-hole symmetry
and when the third term éfly,, (U-U") 3, NmNmy, IN EQ. (4.16) is neglected, no negative
weight appears. Insuch a cazé,} becomes the complex conjugateZ@J} with a particle-
hole transformation, so the weight (4.7) becomes positive.

However, this situation is not realized when we take account of the third term in
Eg. (4.16), because this term has to be transformed with the usual H-S transformation
(4.5), where the auxiliary fields are real and opposite sign for the opposite spin compo-
nents, as contrasted with a complex field in (4.17), so ;ﬂ{‘g—’\t: Z{la} cannot hold. For
this reason, Motome and Imada considered an unphysical situatienlJ’ andJ > 0,
and neglected the third term in Eq. (4.16), but this treatment breaks the orbital rotational
symmetry of the interaction.

- Han (2004)
Contrary to these discrete auxiliary-field transformations (4.13) and (4.16), Han [173]
exploited a continuous auxiliary field transformation

e = fdxexp(—nx2+2\/7rfx). (4.18)

He expressedi; for two orbits in a form

2
+ % Z Ny — J Z Ny Moo, (4.19)
mo [oa

and applied Eq. (4.18) to the first term while he decoupled the last term with the discrete
Hubbard-Stratonovich transformation (4.5).

Since, as he showed, this transformation largely improves sign problem compared
with the transformation (4.13), this method would be promising, although we must pick
out the values of (continuous) auxiliary fields from infinite sample space at each time
slices.

J -
-5 [Z o(C} Coy + €} Cir)

o

- Sakai et al. (2004)
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Sakaiet al. [156] proposed aeal and discretedecoupling formula fod; for two
orbits in a form,

+1
~ 1 A A ~ A ~ A
—AtH; r(fr—f,) ga(Ny+N;)+bNy N
e = = e(‘ 1) g+ T 4.20
52 (4.20)

where

2 in (@ + Ve 1).
—In[cosh@)],
In[cosh@47)],
cl_Cor + €} Cirs
Ny, = Ny + Moy — 2N, Moy (4.21)

SHEE i < I
M

—h

The key points are the relation fdy,

= 16 = 37 @.22)
and the property o,
N2 = N,. (4.23)
Although the termN; N, on the right hand side of equation (4.20) is forth orden,imve
can apply the Hubbard-Stratonovich transformation (4.5) to this term, due to the property
(4.23). The resulting terms of the formn can be combined withly terms. Therefore,
we needbnly twoauxiliary fields forH;.

With the transformation (4.20) we can assign the valués,@d’, andJ independently,
so that we can also hold the real-space rotational symmetry of orbitats U’ + 2J).
Moreover, we found that the sign problem is largely relaxed with this transformation
compared with the transformation (4.13) and (4.17).

Using the transformation (4.20) we investigated superconductivity in multiorbital sys-
tems within the dynamical mean-field approximation. Although the DMFT cannot treat
anisotropic pairings, the symmetry of Cooper pairs with respect to the orbital degrees of
freedom gives various type of pairings, as elaborate$Bi3.3. Actually we found that
the spin-triplet orbital-antisymmetric pairing is most dominant amsmgve pairings in
a rather wide range of filling [156].

Kogaet al. [175] implemented the DMFFQMC calculation with the transformation
(4.20) to study the orbital-selective Mott transition, where the rotational symmetry of
Hund’s coupling plays a crucial role. They revealed important roles of orbital fluctuations
on the Mott transitions. Arita and Held [176] incorporated the transformation (4.20) into
the DMFT+projective QMC method, which can address ground-state properties [225].
They elucidated the existence of the orbital-selective Mott transition at zero temperature.

Despite these successes, some problems remain to be solved. One is the sign problem,
which is much improved with the transformation (4.20), but still hampers studies at low
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temperatures. Another is thefiiculty to extend the transformation (4.20) [and other
transformations (4.17) and (4.18)] to three or more orbits. Since the distinct two-orbital
partsHm”"s in H; do not commute with each other, we cannot decouple the exponential
of Hy = Yoy Hm”' for three or more orbitals into the simple product of two-orbital parts.

In other words, we have

—ATHJ + n —ATH (424)

m<nY

where the right hand side violates the equality of the orbital degrees of freedBimtin
Therefore, if we want to decoupks“™ for more than two orbits, we must construct a
formula decoupling all thél; terms simultaneously, without separating it into each two
orbital partl:lg"”. It seems, however, almost impossible.

In §4.5 we see that thesefficulties can be overcome by use of a series expansion,
instead of the Trotter decomposition, fids.

4.3 Negative-sign problem

Quantum Monte Carlo methods have often been plagued by the so-called negative-sign
problem [226 227]. This problem comes from the fact that the Weight of decoupled Sys-
tatlve property of eIectrons and the cancellatlon of negative and positive weights makes
QMC simulations infficient.

When a negative weight appears in Eq. (4.8), we must change the #gjgihto |Zq|
and accordingly, the observableinto sing{S}A, to retain a probability interpretation of
the weight. Then Eq. (4.8) is rewritten as

Sis) Zisr(Aia) s l4sil (SIgNZis){A)s Davs

(A S :
sy 14s)] 2ust Zis) (SIgNZ;5)Yabs
(aps = SRR (4.26)
st 1 sl

it is possible to recover the equality of orbitals in the interaction by summing over the order in which

the each two-orbital palerﬁ'”%mnf appears. Namely, considerieg"TF‘J for three orbitals for example, we
can decompose it as

1 1
e—ATHJ - é ( ) ATH}ze—ATHg:Se ATH} + e Hj e—A‘rHJme—ATH23
+ e—ATHJ e—ATH‘%Ze—ATH} + e—A‘rHJ e—ATH}3e—ATH12
+ e—A‘rHJ e—ATH%Ze—ATHJ + e—A‘rHJ e—ATH§3e—ATH12)
+ 0O(7d). (4.25)

However, this decomposition will not be suitable because the severe sign problem will occur and also the
large volume of the sample space will lead to a heavy computation.
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In general as temperature is lowered or interaction is strengthened, the number of
negative weights appearing in QMC samples approaches to that of positive weights, and
the average sign,

2omc Zis)
2omc 1)l ’

decays to zero. Because this decay is exponential, it becomes dtitaldat low tem-
peratures to obtain averaged quantities withisient accuracies. This problem has been

a serious obstacle to QMC calculations for the finite-dimensional Hubbard model, where
the transfer of electrons between sites is a source of negative weights.

(4.27)

In the DMFT, however, no negative weights appear in calculation for the single-orbital
Hubbard model. This is because the DMFT replaces the hopping between sites by a
mean field, so that there are no particle-interchanging terms in this approximation [228].
The sign problem does not occur in the DMFT even for the multiorbital Hubbard model
with Ising-type Hund’s coupling. Nevertheless, when we inclttje the sign problem
arises because this interaction exchanges electrons hatfieigedt spins and orbitals. The
severity of the sign problem depends on how to decompose the original system into one-
body systems. Although there is no firm guiding principle to reduce negative weights, we
semiempirically know that negative weights are suppressed (i) when nondiagonal parts,
corresponding tdd;, of the interaction matrixd’ in Eq. (4.11)) is small, or (ii) when the
nondiagonal parts appear less frequently.

In §4.5 we propose a novel QMC algorithm based on a series expansion. The algo-
rithm remedies the sign problem to a large extent {ge@). We consider that the point (ii)
is, in particular, relevant to this relaxation of the sign problem, since the series expansion
givesH; less chance to appear than the conventional Trotter decomposition does.

Before turning to our algorithm, in the next section we review recent progress in QMC
methods based on series expansions.

4.4 Series-expansion algorithms

A series-expansion QMC method for electron systems was first proposed by Romibouts
al. [229] These authors employed a perturbation series expansion,

e—,BI:l +a _ e—ﬁl—"lom—/sﬁim

~ 0 1 tie to
=egPhy fdrkf dty_ f dt
kz:; 0 0 ' 0 :

Xe—tlﬁﬁo(a, _Igl_]im)e(tl—tz)ﬂﬁo(a, —ﬁlqint) e e(tk—l)ﬁﬂo’ (4.28)

instead of the Trotter decomposition (4.4), to separate out the two-body interaction in the
partition function, where they added a constartb the Hamiltonian and expanded the
Boltzmann factor with respect t8— SHin.. While the factor does not &ect the physics
since it just shifts the origin of energy, introductionefmakes it possible to decouple the
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two-body interaction part with auxiliary fields. Namely, when we consider the Hubbard-
type interactionHj = U ), [niTnil - %(niT + nil)], for example,a — BH;n is decoupled
with the Hubbard-Stratonovich transformation (4.5) through

A a o ' '
a@—fHiny = N Z ealnumsvem]
i

3 = |n(1+ @) (4.29)

whereN is the system size and we used an equatimmoil—ZniTnil)z = Nip+N;; —2nipN;;.
Romboutset al. [230] showed that the algorithm can be applied to a class of interactions
such as the Hubbard interaction and the pairing interaction for atomic nuclei. An ap-
plication to the finite-size single-orbital Hubbard model succeeded in obtaining results
without time-discretization errors with less computational time than the conventional,
Trotter-decomposition algorithm [223]. Although the method uses a perturbation series
expansion, it takes account of all the contributions of the interaction, since the maximum
perturbation order taken into account is higher than the order of the samples above which
the weight is virtually zero. So the scheme is essentially nonperturbative.

Rubtsovet al. [231] proposed another algorithm to evaluate a series expansion of
the partition function and applied it to the DMFT . The algorithm does not involve any
auxiliary fields but uses Wick'’s theorem. Although the algorithrffess sign problem
even in the single-orbital DMFT, it has advantages in treating interactions nonlocal in
space and in time. Recently Werrgtral. [232] proposed to use a perturbation series
expansion with respect to the hybridization function. Since the algorithm can treat strong-
coupling region #iciently, it is also a powerful method for multiorbital systems.

In previous work [233], the present author first extended Rombouts’ algorithm to the
multiorbital Hubbard Hamiltonian (2.9), i.e., we expanded the Boltzmann operator with
respect to the total interactidfiy, + H; shifted by a constant, which we decoupled with
the Hubbard-Stratonovich transformation #dy; and with a similar transformation as
in Ref. [156] [Eq. (3)] forH;. Then we discretized the imaginary tinfe= L4z and
used a Hirsch-Fye-like updating algorithm for solving the impurity problem in the DMFT
context. Although the method significantly relaxes the sign problem and can handle,
in principle, more than two orbitals, it turned out that the calculations are too heavy at
low temperatures or for strong couplings, especially for more than two orbitals. That is
because the computationdl@t increases with perturbation orders of samples appearing
in the Monte Carlo simulation. This order can become very large (see Fig. 4.4 below)
in multiorbital systems since there are many interaction4 {21)M terms inHy and
2(M — 1)M terms inH, per site, wheréM is the number of orbitals.

To overcome this diiculty, in the next section we propose to combine the HFQMC
and the series expansion (SE) QMC methods, i.e., to adopt the series expansign for
while the standard Trotter decomposition fd. This algorithm enables us not only
to handle three or more orbitals but also to reach much lower temperatures or stronger
couplings than HFQMC (Ref. [156]) or SEQMC calculations (Ref. [233]), even for two-
orbital models.
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4.5 The (Trotter + Series-expansion) algorithm

We start with the series expansion of the Boltzmann factor after Ref. [229]. However,
here we perform this only fad; (Fig. 4.5) [234], i.e.,

e}’—ﬁF| — @ B(Ho+Hu)+y-pH;

o) 1 t k

= —,3(|:|0+HU)+Zfdtk...f2dtl t.ﬁ(H0+Hu)(,y ,BH) ,3(H0+Hu)] _ﬁ(l:loH:lu),
k=1 VO 0 i=1

(4.30)

where we have shifted the Boltzmann factor by a constémt3H; to apply the auxiliary-
field transformation (4.37) below.

Now we discretize the imaginary-time integrals and with the notaXipe y — BH3,
Eqg. (4.30) equals to

o L j2 k
e—ﬁ(|:|0+|:|u) + L_k [e—iiAT(HoH:iu))A(lejiAT(F'oH:lu)] e—ﬁ(Hoﬂqu) + O(AT).
(4.31)
We now show that this sum can be rewritten as
0,1 L o
D, Flsus--,s) | |le %] + O4), (4.32)

St ,SL i=1

whereF is a positive weight factok = Y-, s, andX, = 1. To obtain the representation
(4.32), we first cut & the k summation in Eq. (4.31) dt. This cutdt is justified if L

is taken to be greater than the maximum perturbation dedgr(defined and displayed
below) appearing in the Monte Carlo samples, so that there are no contributions from
higher-order terms. In practice, we can makauch larger thak.« (See Fig. 4.4 below):

kmax depends on Hund’s couplingy whereJ is physically not so large, whereas we can
choosel to satisfyL > pU.

Second, we replace those terms having conseciigein Eq. (4.31) by proximate
terms including only oneXy per imaginary time intervalir. For example,: - XXy
e4rHo+H) ... s replaced by - - X;e 4" Ho+HnX, ... This replacement reduces the num-
ber of possible configurations remarkably and casts the summation (4.31) into the form
(4.32) similar to the Trotter decomposition, which enables us to employ their standard
Hirsch-Fye algorithm with only a slightly more complicated auxiliary field at each time
slice. The error involved in this approximation (commutationp(gr), i.e., of the same
order as the time discretization, as long as the average order of the series exginsion
is suficiently smaller thark.. This is simply because the terms having two or more con-
secutiveX,'s rarely appear fork) < L. For example, consider the second-order terms
in Eq. (4.31). There are altogethie(L + 1)/2 second-order terms, but onlyof these
terms have two consecutivg’s in the same imaginary time interval. Hence the error is
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Figure 4.1: The (Trotter Series-expansion) QMC method.

at mostO(247/L). Similar argument for higher orders justify the replacement as long as
(k) < L. Since we do not simply drop the terms with two or more consecitit® but
replace them by terms where tigs are shifted to neighboring imaginary time intervals,
we have to multiply the Boltzmann factor by a fackoto account for these replacements.
The detailed derivation d¥ is given in the Appendix.

Now, we separate oty in Eq. (4.32) using the Trotter decomposition as

e_AT(ﬁ0+|:|U) — e_Aﬂ:'Oe_ATFlU + O(ATZ), (433)

so that Eq. (4.32) has a similar form to the standard HFQMC method.eTH& term
is then decoupled, as usual, into a sum of one-body exponentials with the Hubbard-
Stratonovich transformation,

+1
Ry 1 eV (V> 0),
e Innmsem)] = > Z{ eﬂvs(na+nﬂ—1)+(% (v)< 0), (.39

S

whereV stands fol, U’ or U’ — J, andAy = In(€/™VI’2 + V4V —1). We have also
displayed the case of attractive interactidh< 0), which we shall require when we do
the procedure described in the footnote below Eq. (4.40). Including all tide{(2)M
interactions of density-density type, the decouplingddf™v is given by

~ NU ~
e—A‘rHu — Z QU, (435)
P=1

M
QU = i l_[ g Pm(Nmt=Nmy) l—[ élU’q(Tn{(nfTYT_nITY,—rr)"'/IU’—Jr(I)T'm{(nmo'_nm’rr)
P — N ’
u m=1

m<nY,o

whereP[= 1,..,Ny = 2@M-DM] designates a configuration of the auxiliary-field set
({Pm}, (™™, {r™™) with py, g™ andr™(= +1) denoting the fields for theJ, U’ and
U’ — J terms, respectively.
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For X; = y — BH, in Eq. (4.32) we construct an auxiliary-field transformation as
follows [233]. We first decompos¥, into the sum of all distinct two-orbital parts as

y=BH; = ™ - pAT™),

m<nY
y = Zym"‘. (4.36)
m<nY
We then apply the decoupling
m +1
n At _ Y =B A3[o s 4t (N + Ny o —1)]
y™ - pHM = ———— ghlosle ™+ (Mmoo (4.37)
s 2]
to every pair of orbitals, where
fmm = ¢l e +Cl, G,
~ 1 1+«
A3 = =In
J 2 1-«

= ‘/%4 (4.38)

Combining Egs. (4.36) and (4.37), we end up with
N
Y _BHJ = Z Qé’
S=1

m .
Qg = y" 8_ BJ l—[ eij[asfg‘"fﬂa(nmmm,—l)], (4.39)

(o

whereS[= 1, ..., N; = 4M(M — 1)] corresponds to the se&t ;, t;) for all the M(M - 1)/2
pairs of orbitals i, 7). We stress here that the decoupling (4.39) treats every two-orbital
parts,ﬁg‘“m’s, in H; on an equal footing. This is not achieved by the HFQMC based on
the Trotter decomposition because of the noncommutativitd Bf’s. Namely, in the

HFQMC, even if we rewrite=“™ into the form[ T meny g4y ”: at the expense of an error
O(47?), the unequal treatment of the interorbital interactiotf¥" may cause a problem.
This difficulty is lifted in Eq. (4.36), so that we can readily deal with more than two
orbitals.

Collecting the addenda from the decouptégl andH; terms, we finally obtain

) 0,+,Nj LNy L .
eM= ) Fka%..8) ) [|e™®RQ +0ur).  (4.40)
Sq,,SL P, ,PL i=1

with C}g = 1, where we have extended the region of the valug;afss = 0 for S; = 0,
and§ = 1forS; = 1,---,N;.2 Note that becausg(0;0,...,0) = 1, the zeroth-order

2In practice we can further reduce the number of auxiliary fiefdandt, in Eq. (4.37) are not necessary
when we combine these terms with — J terms in Eqg. (4.35) to decouple them simultaneously.
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Figure 4.2: Real and imaginary parts of the self-energy against the Matsubara frequency
wp for the two-orbital Hubbard model for (a) an insulating case with2, 8 = 10, U’ =

2, J = 04, and (b) a metallic case with= 1, 8 = 6, U’ = 2, J = 1. Result with

the Hirsch-Fye algorithm (Ref. [156]) is shown with black squares, and the present QMC
result with red triangles. (From Ref. [234].)

term in Eq. (4.40) reproduces the Hirsch-Fye algorithm with Ising-type Hund’s coupling.
Owing to the form of Eq. (4.40), which is similar to the Trotter decomposition formula

(4.4), we can apply the same algorithm as in HFQMC for the Monte Carlo sampling.
Even the updating equations for single auxiliary-field flips are the same.

4.6 Applicable region for the algorithm

As a benchmark, we compare in Fig. 4.2 the electron self-energy obtained with our
algorithm to that with the HFQMC method in Ref. [156] for the two-orbital Hubbard
model [234]. We chose the hypercubic lattice with tifieetive bandwidtiWes = 2 V2,

and took 6x 10° Monte Carlo samples for both methods. We can see that the two re-
sults agree with each other within error bars for both (a) an insulating case at half fill-
ingn = 2withp = 10, U = 2, J = 04, L = 100, and (b) a metallic case at
n=1p8=6,U =2 J=1 L=64.

We notice, however, that the statistical error is much smaller in the present QMC
than in the HFQMC. This is because the number of negative signs is greatly reduced
in the present scheme: The sign problem is mitigated. Quantitatively, the average sign
(4.27) in the QMC weights is 0.01(0.03) for HFQMC methods while they are increased
to 0.30(0.50) in the present algorithm in case (a)[(b)]. This also implies that the present
method can reach much lower temperatures. We note that, wilggV) is arbitrary,
the computation becomes mon@&eent wheny — 8V is small. However, since too small
v — BV causes a large roundfaerror, we adopted in these and following calculations
v — BV ~ 0.1-0.3, which has turned out to suppress both the error and the computational
time.
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Figure 4.3: The distributioiy of the order of perturbatiok for the two-orbital Hubbard
model withn = 1.9, 3 =8, U’ = 4, J = 0.2 obtained with the present algorithin € 64
or 100) and with the SEQMC algorithn & 150, Ref. [233]) (from Ref. [234]).

Figure 4.3 depicts a typical distributidwy of the order of perturbatiok contributing
in the Monte Carlo simulationfar= 1.9, 3 =8, U’ =4, J = 0.2. Inthe SEQMC, a peak
in the distribution resides at aroukd= 70. On the other hand, the present (Trot®E)
QMC has a peak at arourkd= 2, which is much smaller than that in SEQMC. This is
natural, since the present method uses the expansion only with respéstwdile the
SEQMC method expands with respect to the total interadtign+ H;. The maximum
order in the distribution is found to lbg,.x ~ 100 for the SEQMC method, whilg,ax ~ 15
is much lowered for the present QMC method. This meanslithaust be taken to be
> 100 for the SEQMC method to take care of all orders, white U ~ 35 sufices for
the present algorithm to take care of all orders. Such a smaller valuedEmatically
reduces the computationdtert in QMC simulations, which increases proportionately to
L3. The weight is virtually zero abovenay, in actual simulations, so that, although the
method exploits the perturbation-series expansion, it takes accoaltitartlersin fact.
Moreover, the average ordék) is as low as 4 for the present QMC, which means that
the approximation employed to obtain the form (4.32) has only a very mitexten the
results, and hence is justifiable. This can also be confirmed from the fact that the results
do not significantly depend dn

Figure 4.4 shows the computable regions for the present QMC and for the HFQMC
methods (Ref. [156]) whehl; is included. Here we define the region as computable
when the average sign is greater than 0.01. We can see that a much wider parameter
region becomes computable in the present algorithm than in the HFQMC method. For
small J (g 0.2), we can explor% to 15 tlmes lower temperatures. We attribute this
improvement to the fact that; (which i |s the source of negative weights) appédatisnes
for every sample in the HFQMC method, while we have ofidysuch terms on average
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Figure 4.4: Computable regions (hatched) in T{eemperature)}(Hund’s coupling) pa-
rameter space that can be computed with the present and with the Hirsch-Fye QMC meth-
ods (Ref. [156]) for the two-orbital Hubbard model with = 4, Wy = 2V2. Here we
define the computability by requiring the average sign to be greater than 0.01. (From
Ref. [234].)

in the present QMC algorithm.
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Chapter 5

Itinerant ferromagnetism in
multiorbital systems

We applied the QMC algorithm developedsi4.5 to the study of itinerant ferromagnetism
in multiorbital systems.

In §5.1.1 we elaborate our motivation. We review preceding studies on ferromag-
netism in the single- and multiorbital Hubbard modeli1.2 and in§5.1.3, respec-
tively. §5.2 is devoted to the comparison of the results between Ising and SU(2) Hund’s
couplings. We discussffects of Hund’s coupling on ferromagnetic instability §6.3.

We summarize the results §%.4.

5.1 Introduction

5.1.1 Motivation

In this chapter, we explore metallic ferromagnetism in the multiorbital Hubbard model
(2.9) on an fcc lattice, with our eyes set on the itinerant ferromagnetism in transition
metals and transition-metal oxides, especially in fcc Ni.

As we shall describe in detail i§5.1.2, the single-orbital Hubbard model has long
been studied as the minimum microscopic model that includes the essence of itinerant
ferromagnetism in transition-metal-based materials. However, as a consequence of vast
research, it has been recognized that the single-orbital Hubbard model on simple lattices
does not easily show ferromagnetism for realistic values of interatkiohhen, in order
to explain itinerant ferromagnetism in real materials, many authors have considered in-
gredients other than the Hubbard interactibnThe two factors are now considered to be
significant;lattice structures and the degeneracydabrbits.

Kanamori [30] suggested that a lattice structure (in particular, the shape of the density
of states), as well as the Coulomb interaction, is crucial for the stability of ferromag-
netism. He discussed the itinerant ferromagnetism in fcc Ni, whose density of states has a
peak at the upper band edge, and suggested that this peak structure of the DOS stabilizes
the ferromagnetism. (This topic is discussed in more det&bit.2.)

55



On the other hand, the importance of the degeneradyoobits has long been empha-
sized for transition-metal-based ferromagnets [38, 39], where Hund’s exchange coupling
is considered to stabilize the ferromagnetism. However, the complexity of the multiorbital
Hubbard model has restricted studies only in one dimension or with drastic approxima-
tions such as strong-coupling limit. (This topic is discussed in more det&b.ih.3.)
Hence, we do not have a reasonable estimate for fileeteof the orbital degeneracy in
three-dimensional systems in an intermediate-coupling~< W) region, which corre-
sponds to transition metals and their compounds.

Here we discuss the long standing issue whether either lattice structure or orbital de-
generacy can explain itinerant ferromagnetism in transition-metal-based materials. To
address the problem, we study the double-orbital Hubbard model on the simple cubic and
the fcc lattices, using the DMFT combined with the QMC algorithm propos&d .

Before turning to the problem, we discuss§ib.2 a diference in the ferromagnetic
instability between Ising and SU(2) Hund’s couplings. The result explicitly shows the
importance of the spin and orbital rotational symmetries in the Hamiltonian (2.9), which
are dficult to treat with the conventional Hirsch-Fye QMC method but become tractable
in the QMC algorithm developed i§4.5.

5.1.2 Metallic ferromagnetism in the single-orbital Hubbard model

As mentioned in§1.2.2, there are several rigorous proofs of the existence of ferromag-
netism in the single-orbital Hubbard model [32]; Nagaoka ferromagnetism, ferrimag-
netism and flat-band ferromagnetism. However, these are proved only in a few restricted
situations. Hence it is still an open question whether ferromagnetism exists in the single-
orbital Hubbard model for an intermediate coupling on an ordinary lattice. We review
here some approximate theories for this problem.

- Hartree-Fock approximation
The Hartree-Fock approximation for the single-orbital Hubbard model leads to the
Stoner criterion for ferromagnetism [10],

UD(Eg) > 1, (5.1)

whereD(Eg) is the density of noninteracting electron states at the Fermi erigrgpow-

ever, the Hartree-Fock approximation considerably overestimates the stability of ferro-
magnetism since electron correlatiofieets, which lower the energy of paramagnetic
states against the ferromagnetism, are neglected in this approximation.

- Gutzwiller approximation
In order to discuss correlatiorifects in the single-orbital Hubbard model, Gutzwiller
[31] introduced a variational wave function,

v =] - @-gnimnuve (52)
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Figure 5.1: The bandstructure of (paramagnetic) fcc Ni calculated by Solovyev and Imada
[236]. The LDA bands are shown with light color while the GW bands, which are de-
scribed by five pseudo-Wannier orbitals of predominantycBaracter, are shown with
dark color. (After Ref. [236].)

whereg is a variational parameter @ g < 1) controlling the number of doubly occupied
sites, andy is the ground state fdd = 0. Gutzwiller determined in a statistical consid-
eration, and applied the approximation to the model on a three-dimensional face-centered
cubic (fcc) lattice whose density of states (DOS) has a peak near the upper band edge.
He found a ferromagnetic state only for nearly full bands for a rather ldre 2W, W.:
bandwidth). For a square lattice in two and three dimensions, the Gutzwiller approxima-
tion leads to ferromagnetism only for very large(> 7W) [235]. These results show

that, in the presence of electron correlations, ferromagnetism requires much severer con-
dition than (5.1), and that the occurrence of ferromagnetism strongly depends on lattice
structures.

- Kanamori theory T-matrix approximation)

Similar conclusion was obtained by Kanamori [30], who discussed the ferromag-
netism in Ni with theT-matrix approximation. Nickel has an fcc structure with eight
electrons in five @ orbitals. Since thd orbitals are almost degenerate (see Fig. 5.1), each
d band has about 0.4 holes in total of up and down spins. While the density of electron
states in Ni has a peak at the upper band edge, in the following discussion, we consider
the DOS which has a peak at the lower band edge (Fig. 5.2).

Kanamori investigated the single-orbital Hubbard model with 0.4 particles on an fcc
lattice, which corresponds to the Ni case after the electron-hole transformation. The
T-matrix approximation takes account of multiple scatterings between electrons only
through a two-particle propagator in the particle-particle (pp) channel (the Feynman dia-
grams as represented in Fig. 5.3),

T
PP(Q) = — _
XPP(E) = ;G(m A)G(-K). (5.3)
whereN is the system size, arldandq denote k, iw) and (@, iv), respectively. Then the
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Figure 5.2: The density of states for noninteracting electrons on the fcc lattice considered

in this section. The red numbers represent the filling of the band. The black numbers
denote the corresponding total band filling for two-orbital systems.
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Figure 5.3: The Feynman diagrams for the particle-particle scatterings included in the
T-matrix approximation. A dashed line represents the Hubbard interddtiamd a full
line represents Green'’s function for a non-interacting electron.

electron self-energy is written as

2(K)

&> 6k + V()
q

VP = -U™(0) (5.4)

1
1+wam)_1}

This approximation becomes exact in the dilute limit because the contribution from holes
is neglected in this limit.
The particle-particle scattering modifies the condition (5.1) into

U

TXIOP(O)D(EF) > 1, (5.5)

where we approximateg’?(q) by xP°(0). The condition (5.5) means that a latgealone

does not guarantee ferromagnetism, unlike the Stoner condition (5.1), and that it depends
strongly on shapes of the DOS. Kanamori discussed the ferromagnetism in fcc Ni, and
concluded that the shape of the fcc DOS is favorable for the condition (5.5), since it
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has both a peak at aroumit and a relatively wide bandwidth, which redugé$ in the
denominator on the left hand side of the condition (5.5).

In the Kanamori theory, the degeneracylairbits has been neglected since the degen-
eracy has only minorféects on the stability of ferromagnetism in thematrix approxi-
mation. Following the discussion by Kanamori, let us consider the energy shift, induced
by interactiondJ, U’ andJ, for an electron pair added onto the Fermi sphere. First we
consider a spin-triplet pair in the momentum space acrdBsreit orbitalsnandnt. In
the T-matrix approximation the energy shift’® from the noninteracting state is given

by
1 U —-J
N1+ (U =P’

mmn

Atriplet — (5.6)

where we abbreviated the momentum dependence. On the other hand, the energy shift for
a spin-singlet pair across orbitals is given by

1

snger_ | U *d o ] (5.7)
2N 1+ (U + I 1+ (U = It | '
Then the energy reduction of the triplet from the singlet is
triplet _ gsinglet  _ i U +J _ u-J ]
2N [1+ (U + I 14+ (U = It
1 J
~ I < U). (5.8)

N1+ U2

Since the factor (& U’y"" )2 is considered to be small (Kanamori [30] evaluated the
factor to be less than 0.1), the contributionbfo ferromagnetism is negligible in the
T-matrix approximation. This conclusion is, however, only applicable féligantly
low band fillings, whereparticle-hole scatteringslo not play a significant role. For a
general band filling, Hund’s coupling and the pair-hoppihgan crucially contribute to
ferromagnetism through the particle-hole scatterings, as we shall disc3&8ith.

- Fluctuation-exchange approximation

Arita et al. [143] examined ferromagnetism in the single-orbital Hubbard model by
means of the fluctuation-exchange (FLEX) approximation [44]. The FLEX takes into
account multiple scatterings in the particle-hole channel (the bubble diagrams [Fig. 5.4(a)]
and the particle-hole ladder diagrams [Fig. 5.4(b)]) as well as those in the particle-particle
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Figure 5.4: The Feynman diagrams included in the FLEX approximation: (a) Bubble, (b)
particle-hole ladder, (c) particle-particle ladder diagrams.

channel [Fig. 5.4(c)]. Then the self-energy is given by

K = > [Gk- V) + G-k + VPR
q

Uz ™) 1
V@) = o u)g)cp“(q)2 V% [1 - UyP(Q) 1]
3, M@ 1, M@
= Vo "2V Te U VO
@ = o > Glk+ G, (59)
k

Notice that in the particle-hole channel theeet ofU is amplified by a factor (2U yPM 2.

Since the FLEX approximation omits vertex corrections for the self-energy (e.g., Fig. 5.5),
it is only reliable for weak-coupling regions. Aritt al. compared a ferromagnetic and

an antiferromagnetic instabilities in a weak-coupling region for the fcc, body-centered
cubic (bcc), and simple cubic lattices in three dimensions. The result shows that the
ferromagnetic instability is most enhanced in the fcc lattice, while the antiferromagnetic
instability appears for the bipartite bcc and simple cubic lattices, where the instability is
stronger in the bcc lattice than in the simple cubic lattice. The ferromagnetic instability
for the fcc lattice becomes largest for a low band fillimg~( 0.2), where the Fermi energy

is near the peak of the DOS (Fig. 5.2). They confirmed their FLEX results with the
two-particle self-consistent approximation, which includes a contribution from the vertex
corrections.

- Dynamical mean-field approximation
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Figure 5.5: An example of the self-energy diagrams omitted in the FLEX.
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Figure 5.6: Magnetic phase diagram for the- oo single-orbital Hubbard model on the
hypercubic lattice withVg = 2V2, obtained by Obermeiet al. [141] The ordinate is

the Coulomb interaction, whetg/(1 + U) = 1 corresponds to the strong coupling limit,
while the abscissa is a hole-doping from the half filling, i®es 1 — n (n: band filling).

PM, FM and AFM denote paramagnetic, ferromagnetic and antiferromagnetic phases,
respectively. (After Ref. [141].)

By contrast to the abové-matrix and FLEX theories, the dynamical mean-field the-
ory (DMFT) can treat intermediate and strong couplings so that it can describe the Mott
transition. Some authors have investigated ferromagnetic instabilities with the DMFT for
the infinite-dimensional Hubbard model. For hypercubic lattices no ferromagnetism has
been found at any band filling fdd < 3W [22, 140]. Obermeieet al. [141] investi-
gated the larg&J limit with the DMFT + non-crossing approximation (NCA) method,
and found a ferromagnetism for fillings slightly doped from the half fillingX). Figure
5.6 is the magnetic phase diagram obtained by Obernséigr A ferromagnetic region
appears for larg® (> 7W) bordered by an antiferromagnetic region. Obermeteal.
discussed the ferromagnetism in relation to the Nagaoka state.

Meanwhile, Ulmke [142] studied fcc lattices in three and infinite dimensions with
the DMFT+QMC method. He obtained a ferromagnetic state for a reasonable value of
U(~ W). Figure 5.7 is thél -n phase diagram for the three-dimensional fcc lattice with
next-nearest-neighbor hoppitig= t/4, obtained by Ulmke. Similar phase diagram was
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Figure 5.7: Magneticl-n phase diagram for the single-orbital Hubbard model on the

d = 3 fcc lattice witht” = t/4 forU = 6 (Wer = 4), obtained by Ulmke [142]. PM, FM

and AFM denote paramagnetic, ferromagnetic and antiferromagnetic phases, respectively.
(After Ref. [142].)

also obtained by Wegnet al. [237] with the DMFT+ (third-order) iterative perturbation
theory (IPT). They found that the Curie temperatiigeis highest forn ~ 0.6 and it
becomes almost zero for low fillings (< 0.2). This filling dependence filers from the
T-matrix [30] and the FLEX results [143] in the weak-coupling region.

5.1.3 Ferromagnetism in the multiorbital Hubbard model

As described in§1.3, the inclusion of the orbital degrees of freedom can significantly
affect spin states through Hund’s exchange coupling. While Hund’s coupling aligns two
electron spin®n the same sitdt may become a cause for a long-range ferromagnetic
order via electrons’ motion through the crystal. Because most of transition-metal-based
ferromagnets (not only Fe, Co, Ni but also SrRu0s;_SrCo0;, etc.) indeed have the
d-orbital degeneracy, Hund’s coupling may be playing a crucial role in the appearance of
the ferromagnetism. For such a reason, many authors have addressed ferromagnetism in
multiorbital systems.

- Ferromagnetism with orbital ordering at= 1

Especially, two-orbital cases on a bipartite latticea at 1 (i.e., one electron per atom)
have attracted most intensive attentions since a ferromagnetic order involving an antiferro-
orbital order is anticipated from a simple discussion on the kinetic exchange interaction
(see§1.3.2). Roth [58] introduced a multiorbital Hubbard model which includes Hund’s
coupling, and showed the existence of the ferromagnetic state with the antiferro-orbital
order in a strong coupling regime within the random phase approximation. The result was
supported by the quantum Monte Carlo (QMC) simulation [238], the exact diagonaliza-
tion (ED) [239, 240, 241] and the density-matrix renormalization-group (DMRG) method
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Figure 5.8: The ground-state phase diagram for the two-orbital Hubbard model with
SU(2) Hund’s coupling and the pair-hopping term in one dimension forl, obtained by
Kusakabe and Aoki [239] with the exact diagonalization method for six-site system with
the open-boundary condition. The shaded region represents ferromagnetic state, which is
metallic on the lineJ = U’ while insulating otherwise. The physical regiondis< U’.
Parameters are fixed &s= U’ + J. (From Ref. [239].)

[242] for finite-size one-dimensional systems (Fig. 5.8).

Momoi and Kubo [172] investigated, with the DMFED method, thed = oo two-
orbital Hubbard model on a hypercubic lattice, taking account of SU(2) Hund’s coupling
and the pair-hopping interaction. For the quarter filling= 1), they found a ferromag-
netic ground state with the antiferro-orbital order for a strong coupling regdon 8Wes
andJ = Wez/3).

- Metallic ferromagnetism

However, the ferromagnetism with the antiferro-orbital order may be peculiar to two-
orbital systems, and since the ferromagnetic state is insulating, it cannot account for the
itinerancy in transition-metal-based ferromagnets. There have been a few studies for the
metallic ferromagnetism in the multiorbital Hubbard model.

Kusakabe and Aoki [239] investigated, by means of the ED, the double-orbital Hub-
bard model with the SU(2)-Hund and pair-hopping interactions in one dimension. They
showed the existence of itinerant ferromagnetism-atl for a specific parameter region
J = U’ (Fig. 5.8). They also mentioned that a doping of extra electrons drastically expands
the region of the metallic ferromagnetism in & J plane. Hirsch [241] examined itin-
erant ferromagnetism away from quarter filling with the ED for one-dimensional chains.
The result indicates that the Hund exchange by itself does not lead to a ferromagnetic
state for a realistic parameter region for transition metals, so that he suggested the im-
portance of interatomic exchange interactions. However, the one-dimensional calculation
does not take account of the lattice structure of real materials, which is an important fac-
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Figure 5.9: The ground-state phase diagram for the two-orbital Hubbard model with
SU(2) Hund’s coupling on a hypercubic latticerat 1.2, obtained with the DMFF¥ED
calculation by Momoi and Kubo [172]. Thefective bandwidttWy is 2V2. Parameters

are fixed ad) = U’ + 2J. The physical regionis @ J < U’. (From Ref. [172].)

tor for multiorbital ferromagnetism, as we discuss below. Sakareb&h [242] studied

a one-dimensional system with the DMRG method, and found itinerant ferromagnetism
for J < U’ from low to high electron densities @n < 1.75) except fon = 1, where the
insulating ferromagnetism appears.

On the other hand, the infinite dimensional limit of the double-orbital Hubbard model
has been investigated by some authors. Momoi and Kubo [172] have also applied the
DMFT+ED method to study the dopingfect to then = 1 insulating ferromagnet in the
model with the SU(2) Hund and pair-hopping terms. They obtained metallic ferromag-
netism in an electron-doped case= 1.2) for rather strong interaction®)(> 4We and
J = W) (Fig. 5.9). In a hole-doped case € 0.8), however, no ferromagnetism was
found forJ < U’ < 7W. Held and Vollhardt [164] adopted the model with Ising Hund’s
coupling on the Bethe lattice, which has a semielliptical DOS (3.8), and implemented a
DMFT+(Hirsch-Fye)QMC calculation at finite temperatures. They calculated the spin
and orbital susceptibilities in the paramagnetic phase, and determined phase boundaries
from the temperatures at which the susceptibilities diverge. The obtadirepghase di-
agram (Fig. 5.10), where the interaction parameterdare 2.25W, U’ = 1.25W and
J = W (which hold a relatiolJ = U’ + J, instead of the relation (2.7)), shows that a
metallic ferromagnetism appears in a wide range of filling, ® n < 1.8. They men-
tioned that above the Curie temperature no orbital order was found for these interaction
parameters even far = 1, while the orbital order may appear below the Curie temper-
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Figure 5.10: The magneti®-n phase diagram for the two-orbital Hubbard model
with Ising Hund’s coupling on the Bethe lattice wiWw = 4, obtained with the
DMFT+HFQMC calculation by Held and Vollhardt [164]. Parameters are settd be9,

U’ =5andJ = 4. PM, FM and AFM denote paramagnetic, ferromagnetic and antiferro-
magnetic phases, respectively. (From Ref. [164].)

ature, which was not addressed by the calculation in the paramagnetic phase. Held and
Vollhardt also examined a possibility of the orbital ordering in the paramagnetic phase,
and found it nean = 1 for smallerJ than that used in Fig. 5.10. These DMFT results
indicate that the itinerant ferromagnetism requires unrealistically large vallg¢sofl J

on ordinary lattices.

A more realistic calculation was done byiBemanret al. [243] with the Gutwiller
approximation for the multiorbital Hubbard model with the Ni bandstructure. The calcu-
lated results for the exchange splitting, the magnetic moment, etc., for the ground state
show a better agreement with experiments than the LDA results. However, roles of the
lattice structure and of the orbitals are not clear in their study§5l8 we shall discuss
this point with a more refined method, the multiorbital DMFT.

5.2 Comparison of the ferromagnetic instability between
Ising and SU(2) Hund'’s couplings

In this section we discuss thefilirence in the ferromagnetic instability between Ising and
SU(2) Hund’s couplings [234]. We calculated the ferromagnetic spin susceptibility,

x(0,0) = ) xZ.(0,0),
mm
1% (F o
X (0, 1v) = —f de dT'(TTSZm(T)qum(T’»e”’(T_T), (5.10)
B Jo 0
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Figure 5.11: Inverse spin susceptibility for the two-orbital Hubbard model with the SU(2)-
type Hund and pair-hopping interactions as compared with the Ising-type Hund coupling
for U’ = 2.5 andJ = 1 for the semielliptical density of states of widith = 2. The solid

lines are guide to the eye, and the dashed lines extrapolations. (From Ref. [233].)

in the paramagnetic phase in the two-fold degenerate Hubbard model in the infinite di-
mensions, wherg?:  is obtained through the Bethe-Salpeter equation similar to that for
the single-orbital case, Eq. (3.16). In Ising case, we exploited the conventional Hirsch-
Fye QMC algorithm while in SU(2) case we employed the QMC algorithm developed in
§4.5.

Figure 5.11 plots the inverse of the spin susceptibilities against temperatude=for
45 andJ = 1 atn = 1.25, where the Bethe lattice with the bandwidth = 2 has
been adopted. Since calculations at temperatures belevd.05(0.08) for Ising[SU(2)]
Hund’s coupling are rather expensive, we fitted the data albowe0.05(0.08) with the
Curie-Weiss lawy™! o« T — T, and extrapolated the lines to lower temperatures. We can
see that the susceptibility in the Ising case diverges at a finite temperature around 0.02,
while that in the SU(2) case remains finite downlte= 0. This result indicates that the
Ising treatment of Hund’s exchange grossly overestimates the ferromagnetic instability.

We consider that this result is a general consequence offtieeatit energy of the two-
electron states, discussed§in.2, between the Ising and SU(2) Hund couplings. Namely,
in the Ising case the lower energy states consist of the two states,

CiiCrys With S7 = 1 and

toof with SZ =
Cimy Ciyy, With S = -1,
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so that spin flips between these two states must go through a higher energy state,

i(c

\/— imT |mL

In the SU(2) case, on the other hand, the lower energy states consist of the three states,

|mT Iml) with S* = 0.

¢ ¢ with S?=

im? |m’

¢ ¢ with S?= -1, and

im| ~Zim’ |

1
T(ClmT iy
so that these spin states can move to each other without the cost of the énditggn,
the local moment is dfier in the Ising case than in the SU(2) case, which accounts for the
stronger tendency to ferromagnetism in the former case.

+ ¢l oChy) with S7 =

In fact, preceding DMFFQMC calculations with Ising Hund’s coupling have a ten-
dency to overestimate the Curie temperatures for transition-metal-based materials, com-
pared with the experimental values: For example, the Curie temperatures calculated for
manganites [244] and iron [146] arelO00K and 1900K, respectively, which are much
higher than the experimental values300K for manganites and 1043K for iron. The
present comparison indicates that the main reason for overestimating the Curie temper-
ature in such calculations is not only the mean-field nature of the DMFT but also the
incorrect symmetry of Hund’s coupling.

5.3 Hfectof Hund’s coupling on metallic ferromagnetism

In this section, we address the problem whether we can attribute the appearance of itin-
erant ferromagnetism id-electron systems to a single mechanism; lattice structres
thed-orbital degeneracy. We study ferromagnetism on the fcc lattice in an intermediate-
coupling region, keeping Ni in mind, which has been considered a typical example of
Kanamori’'sT-matrix approximation theory.

5.3.1 Consideration from the Kanamori theory — particle-hole chan-
nel

As explained in§5.1.2, the Kanamori theory neglects tth@rbital degeneracy since the
contribution of Hund’s coupling on the stability of ferromagnetism is estimated to be
J/(1 + U’yPP)?, which is much smaller than that b, i.e.,U/(1 + Uy*P).

However, this discussion cannot apply beyond Thenatrix approximation, which
takes into account only particle-particle scatterings and is reliable only for low band fill-
ings. For a general band filling contributions from other type of scatterings become im-
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portant. In particular, if we take in particle-hole scatterihigise above discussion on the
orbital degeneracy breaks down: In a similar way toThmatrix theory (se€5.1.2), we

can estimate the contribution of the particle-hole (ph) scatterings to the stability of the
ferromagnetism as

U
T U (5.11)
for U, and
J
(1—_ Uy (5.12)

for J. Notice that the contribution al is amplified by a factor (+ U’y?™~2, which is
expected to be much larger than thatkfi.e., (1-UyP"). Therefore, the orbital degrees

of freedom, especially Hund’s exchange coupling, can play a significant role when the
particle-hole scatterings are included.

From such a perspective, we investigated the two-orbital Hubbard model with Hund’s
exchange coupling on an fcc lattice in three dimensions. Comparing the result with that
for a multiorbital simple cubic lattice and that for a single-orbital fcc lattice, we discuss
whether a single mechanistattice or orbital, can account for the itinerant ferromag-
netism in Ni.

We employed the DMFT combined with the (TrotterSeries-expansion) QMC, e-
volved in§4.5, as the impurity solver. The algorithm enables us to obtain results holding
the spin- and orbital-rotational symmetries. Although the DMFT neglects the momentum
dependence of the self-energy, the approximation is expected to be good for the present
system since an fcc lattice has a rather large configuration number, that is, twelve nearest
neighbors and six next-nearest neighbors. Apart from the neglection of the momentum
dependence, the DMFT takes in all types of the Feynman diagrams including the patrticle-
particle and particle-hole scatterings.

5.3.2 Result for the simple cubic lattice

Before turning to the results for the fcc lattice, we first show results for the simple cubic
lattice. We calculated the spin susceptibility for the double-orbital Hubbard model on the
simple cubic lattice with the dispersion,

3
(k) = ZtZ cosk). (5.13)
i=1

Here we takd = % ~ 0.408, which gives anféective bandwidth (defined by Eg. (3.10))
W = 4. The initial density of states is plotted in Fig. 5.12.

Liebsch [245] discussed arffect of particle-hole scatterings due to the Coulomb interadtion Ni.
He incorporated theftect into a renormalization of the hole propagator, and suggested that the particle-hole
scatteings should be included to account for experimental photoemission spectra.
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Figure 5.12: The density of states for noninteracting electrons on the three-dimensional
simple cubic lattice wittWg; = 4.

Figure 5.13 is a plot for the inverse of the spin susceptibility (5.10) against temperature
for various band fillings. The calculations were done abbve 0.1, and we fitted the
data with the Curie-Weiss law and extrapolated the fitting lines to lower temperatures.
We usedJ = 8, which is twice larger thalVer, andJ = 1, and varies the band filling
from 0.75 to 1.5. The result implies that there is no ferromagnetic transition for any band
filling for these interaction parameters. This result may be compared with the result for
thed = oo hypercubic lattice [172], where a ferromagnetic ground state is found only for
a very largel (= 4Wer) andJ (= Weg). Since the present parameters are large compared
with those for transition-metal-based materidls+{ W), it seems impossible to attribute
the itinerant ferromagnetism in the materials solely to Hund’s exchange coupling.

5.3.3 Result for the fcc lattice
Now we show results for the fcc lattice. We have the dispersion,

3

e(K) =4t )" cosfq) cos) + 2t )" cos(X), (5.14)

i<] i=1

with the hopping parametets- 4t = 32—\7121 ~ 0.2843 {’: next-nearest-neighbor hopping),

for which the dfective bandwidtiWe; is 4. The density of states for noninteracting elec-
trons is shown in Fig. 5.2, where the bandwidth (the width between the upper and lower
band edges) is 4.83. Since the width ofdNBands is about 4.5 eV (as we can see from
Fig. 5.1), the energy unit roughly corresponds to eV.

- Temperature dependence
Figure 5.14 depicts the temperature dependence of the spin susceptinligy Bb.
We selected this filling because the ferromagnetic instability is most enhanced at around
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Figure 5.13: The inverse spin susceptibilities plotted against temperature for the two-
orbital Hubbard model on thé = 3 simple cubic lattice witWe; = 4 for various band
fillings. Interaction parameters atk= 8, U’ = 6 andJ = 1.

n=215forU =4 andJ = 0.5, as we can see from Fig. 5.17 below. The calculations were
done abovel = 0.067, and the Curie temperatures were estimated with extrapolations.
The intraorbital Coulomb interactiod is set to be 4, which is a reasonable value for
transition metals. We introduce interactions one by one;

(i) single-orbital case, i.e., multiorbital case with = J = 0,

(if) multiorbital case withU” = 4 andJ = 0,

(iii) multiorbital case withU’ = 3.5 andJ = 0.25, and

(iv) multiorbital case withJ’ = 3 andJ = 0.5.

In (ii)-(iv) we have kept the relatiob) = U’ + 2J.

In the case (i) the Curie temperature is estimated to be about 0.03. When the interor-
bital Coulomb interactioiJ’ is introduced, the ferromagnetic fluctuation is suppressed
and the transition disappears [case (ii)]. However, Hund’s coupliggossly enhances
the ferromagnetic tendency and the Curie temperature comes back to finite values [(iii)
and (iv)], which are as large as the Curie temperature in the single-orbital case. Moreover,
we can see that the Curie temperature significantly dependstan~ 0.015 forJ = 0.25
while T, ~ 0.05 for J = 0.5. These results clearly show crucial roles of the interorbital
interactions on the ferromagnetism.

Figure 5.15 is a similar plot for a lower band filling = 0.75. This filling for the
two-orbital model roughly corresponds to the filling of fcc Ni, where almost degenerate
five d bands have two holes per site, so that thimands have about 0.8 holes per site. We
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Figure 5.14: The inverse spin susceptibilities plotted against temperature for the two-
orbital Hubbard model on the fcc lattice with= 4t” andW = 4 forU = 4 atn = 1.5.

We have kept = U’ +2J for (ii)-(iv). The solid lines are guide to the eye, and the dashed
lines extrapolations.

compare the following four cases;
() single-orbital case, i.e., multiorbital case with = J = 0,
(ii) multiorbital case withU” = 4 andJ = 0,
(iif) multiorbital case withU’ = 3 andJ = 0.5, and
(iv) multiorbital case witHJ’ = 2.5 andJ = 0.75.
In the case (i) the Curie temperature is around 0.03, and no transition at finite temperatures
for the case (ii). The Curie temperatures ot 0.5 [(iii)] and 0.75 [(iv)] are estimated to
be about 0.01 and 0.03, respectively.

When we compare the Curie temperaturedet 0.5 atn = 0.75 with that for = 0.5
atn = 1.5, we can see that the ferromagnetic instability is smaller in the former case.
Since the Fermi energy far = 0.75 is closer to the peak of the DOS (Fig. 5.2) than that
for n = 1.5, the above filling dependence is totally out of the Stoner picture, so that it
also indicates the importance of correlatidfeets. ForJ = 0.75 we obtained the Curie
temperature as large as that for the single-orbital case [(i)]. This valdasostill in a
range of estimates for transition-metal-based materials.

While the qualitative behavior is similar to that foe= 1.5, we notice that the)’ andJ
dependence of the susceptibility foe 0.75 is weaker than that for= 1.5. It may be due
to the low electron density, which makes the interactions, especially the scatterings in the
particle-hole channel, lesdfective. Nevertheless, the interorbital interactions still play
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Figure 5.15: The inverse spin susceptibilities plotted against temperature for the two-
orbital Hubbard model on the fcc lattice with= 4t" andWer = 4 atn = 0.75. The solid
lines are guide to the eye, and the dashed lines extrapolations.

important roles, in contrast to the Kanamori theory, where the orbital degrees of freedom
are neglected on the basis of thematrix approximation. The present result indicates
that even for fillings as low as that for Ni (0.4 holes per band), the contribution from
particle-hole scatterings is significant. Therefore we need strong-coupling theory beyond
the T-matrix approximation, which simultaneously means thatdtebital degeneracy
must be taken into account.

- Local spin moment

Since Hund’s exchange coupling aligns electron spins on the same site, one might
think that the enhancement of the spin susceptibilitydbyay result from the formation
of a local spin moment.

Figure 5.16 is the component of the local spin moment,

2
> (e - nm)} > (5.15)

m

(§H% = %(

calculated for (ap = 1.5 atT = 0.067 and for (b = 0.75 atT = 0.1, corresponding to

Fig. 5.14 and 5.15, respectively. For both of the fillings, temperature dependence of the
local moments is weak for.067 < T < 0.25. Forn = 1.5 the local moment increases as

J is increased with the fixed relatidy = U — 2J while the moment is almost constant
for0< J < 0.75 atn = 0.75.
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Figure 5.16: The local spin moment calculated for the two-orbital Hubbard model on the
fce lattice at (an = 1.5 and (b)n = 0.75. U = 4 and the relatiotJ’ = U — 2J are fixed.

These results suggest that the formation of a local spin moment is only a minor factor
in the enhancement of the spin susceptibility, especially for low band fillings, and that
enhancesionlocalferromagnetic correlations via electron transfers.

- Filling dependence

Figure 5.17 displays the filling arld dependence of the spin susceptibilitylat 0.1.
We fixedJ = 0.5 and variedJ from 2 to 5, keeping the relatiod” = U — 2J. We can see
that the susceptibilities take the largest value at arouad..2-1.5, and the peak position
shifts to higher fillings a¥) is increased. This filling dependence is consideralffgént
from that with single-orbital weak-coupling theories, such asTthmatrix [30] and the
FLEX [143] approximations, where the ferromagnetic instability is most dominant for
lower densitiesr{ ~ 0.4 for two orbits). The present behavior against filling is, however,
similar to that obtained in other strong-coupling DMFT studies on the single-orbital fcc
lattice [142] and on the two-orbital Bethe lattice with Ising Hund’s coupling [164].

5.3.4 Discussion

We saw in§5.3.2 that no ferromagnetism occurs in the simple cubic lattic&Jfer2We;

andJ ~ Wg/4, which are considered substantially larger than the realistic valugs of
and J for transition metals and transition-metal oxides. On the other hand, we saw in
§5.3.3 that for the fcc lattice, where ferromagnetism exists already for the single-orbital
model for an intermediate couplinty (~ W), the Curie temperature significantly changes
with the interorbital interactions: The interorbital Coulomb interactibrsuppresses fer-
romagnetic fluctuations while Hund’s coupling and the pair-hopping interaction consid-
erably enhance the fluctuations. Thus the Curie temperature is determined by the balance
of these interactions. Therefore, we need to consider both lattice structures and orbital de-
grees of freedom to understand the appearance of itinerant ferromagnetism in transition-
metal-based materials.
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Figure 5.17: Left: Spin susceptibility plotted against the band filling for the two-orbital
Hubbard model on the fcc lattice &t = 0.1 for various values otJ, whereJ = 0.5

and the relatiold” = U — 2J are fixed. Right: The density of states for noninteracting
electrons on the fcc lattice (the same as Fig. 5.2).

Here we consider why’(J) suppresses(enhances) the magnetic susceptibility. We
discuss the behavior from the strong-coupling limit and from the weak-coupling regime.

- Reduction of spin susceptibility with’

At first glance, it may seem strange that the interorbital Coulomb interadfiomn,
(nm = X, Nmy), affects the spin polarization (Fig. 5.14, 5.15), since the interaction is spin
independent. To understand theet of U’ qualitatively, it is helpful to consider on-
site two-electron states in the strong-coupling (or atomic) limit, where the Hamiltonian is
given only by the on-site interactions,

Haom = U Z QW Z[U’nlf,nz,_a + (U = J)ny, Ny
+ J(clT ZLCuCzT + CLCL%CZT +H.c). (5.16)

The two-electron eigenstates for the Hamiltonian are classified by the symmetries with
respect to spin and orbital as

Notation  Spin Orbital Expression
19  singlet symmetric (cch;l+c£TcL)|O>

108i sihglet s.ymmetric. \/‘(ClT u _c$T : l)|0>
3”A  triplet antisymmetric V_(clT 5, — C€1)I0)
3" A triplet antisymmetric cl ¢ l0).
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Figure 5.18: Level scheme for the strong coupling limit. (i) Single-orbital case&i.e.0
andU’ = J = 0. (ii) Multiorbital case withU = U’ > 0 andJ = 0. (iii) Multiorbital case
with U’ = U — 2J andJ > 0. Blue (red) lines denote spin-singlet (triplet) states.

The eigenenergies for the six states (Fig. 5.18) are

Eis+ = U+J
Eiso = U +J
Eis- = U=
Exa = Ezua=U"-1J (5.17)

While the spin-triplet states have the same enddgy- J, the orbital-symmetric states

split into three energies) + J, U’ + J andU - J, because there is no SU(2) symmetry for
orbitals. Then, the ground state fdr> 0 andU’ = J = 0 [case (i)] is a superposition of

the four states, 1%33°A and 3'A, while the ground state fdd = U’ > 0 andJ = 0 [case

(i)] is a superposition of the six states, 135, 3°A and 3'A. Counting the number

of spin-singlet states, we find that there are three times larger number of spin singlets in
the case (ii) than in the case (i). These spin-singlet states will reduce the ferromagnetic
tendency, which may account for the reduction of the susceptibility’ip Fig. 5.14 and

5.15.

- Enhancement of spin susceptibility with

Next we discuss the enhancement of the spin susceptibility dvithrom the above
discussion in the strong-coupling limit, we can see that the introductidnlaeping the
relationU = U’ + 2J, brings down the energy of the spin-triplet states. This may be
one reason for the increase of the susceptibility. Indeed, the local momemt=fdt.5
[Fig. 5.16(a)] increases akis increased.

However, forn = 0.75 the local moment is almost constant while the Curie tempera-
ture noticeably increases with This behavior may be understood in the weak-coupling
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regime. As we discussed §b.3.1, it is expected in the weak-coupling region thabn-
siderably reduces the energy of spin triplets through electron scatterings in the particle-
hole channel. As for the filling dependence (Fig. 5.17), the susceptibility fer 0.5
increases aas is increased from a low density to around= 1.5, which should be due

to the increase of the contribution from particle-hole scatterings.nFerl.5, the sus-
ceptibility decreases asapproaches to the half fillingh(= 2), which will result from
increasing antiferromagnetic correlations.

5.4 Summary

We have discussed an important problem of, whether a single mechanism, lattice structure
or Hund’s exchange, can account for the itinerant ferromagnetisirelectron systems,

such as transition metals and transition-metal oxides. We modelled the system as the mul-
tiorbital Hubbard model (2.9), and calculated the spin susceptibility in the paramagnetic
phase, using the DMFT combined with the (TrotteGeries-expansion) QMC method,
which preserves the spin and orbital rotational symmetries.

First we show that the conventional Ising treatment of Hund’s coupling grossly over-
estimates the ferromagnetic instability, so that the preservation of the spin and orbital
rotational symmetries is crucial for discussing ferromagnetism.

Then we calculated the magnetic susceptibility for the simple cubic and fcc lattices
in three dimensions. The result shows that no ferromagnetism arises in the simple cu-
bic lattice for an intermediate-coupling regiod (~ W). On the other hand, in the fcc
lattice the Curie temperature is already estimated to be finite in the single-orbital model,
andT, strongly depends on the valuesWf andJ: U’ remarkably suppresses the spin
susceptibility, which can be understood from the strong-coupling limit as the reduction
of energy splitting in the three spin-singlet states. By contkasgnsiderably enhances
the ferromagnetic instability, which should be due to a local and a nonlocal alignments
of spins, especially contributed from the electron scatterings ipdiigcle-hole channel
Therefore, the Curie temperature on the fcc lattice highly depends on the balance between
the interactions.

We can thus conclude from the present calculations that both lattice straciitiee
d-orbital degrees of freedom are necessary for understanding the itinerant ferromagnetism
in transition metals and their compounds.
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Chapter 6

Application to a three-orbital system

To demonstrate the applicability of our QMC meth@d.6), we have performed a three-
orbital calculation in the framework of the LDADMFT for a typical three-orbital system,
SI‘ZRUO4.

In §6.1.1 we elaborate our motivation and why we chose this material for a test of
our algorithm. The importance of correlatioffexts in this material has been suggested
by many electronic structure calculations, as reviewegGri.2. The detailed crystal
structure and the bandstructure are explainegbi2 (although the material and related
materials have already been mentioned13.3). The model for the DMFT calculation
is constructed i86.3. We show ir§6.4.1 results for the quasiparticle spectra of this mate-
rial, and compare the spectra between Ising-type and SU(2)-symmetric Hund’s couplings.
Result for the quasiparticle mass is show§®4.2.§6.5 is devoted to discussions of the
results. Summary and conclusions in this chapter are givé6.th

6.1 Introduction

6.1.1 Purpose

The main purpose in this chapter is to demonstrate the applicability of the QMC algorithm
developed ir§4.5 to three-orbital systems.

As explained in§4.2 and§4.5, the conventional Hirsch-Fye QMC method hasfi-di
culty in treating the Hund-exchange and pair-hopping interactions. Hieuly becomes
more conspicuous for more than two orbitals, and it seems almost beyond hope to formu-
late the Hirsch-Fye algorithm in a spin-SU(2)-symmetric way for a practical use for three
or more orbitals (se@4.2). Therefore, the Ising treatment of Hund’s coupling has been
invoked in many DMFT studies including LDADMFT (see§3.4). In§5.2 we saw, how-
ever, that the Ising treatment causes a considerable quantitative error (overestimation) in
the spin susceptibility.

Our formulation of the QMC algorithmg§é.5) based on a series expansion makes
it possible to address three or more orbitals with preserved spin and orbital rotational
symmetries. Then our purposes are
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() to demonstrate the QMC calculation on a three-orbital system,

(i) to show the applicability of the present method for real materials,

(iif) to compare the quasiparticle spectra with Ising and SU(2) Hund'’s couplings,
and

(iv) to give a guideline for Ising-type LDADMFT studies to estimate how

spectra change with the recovery of the spin and orbital rotational symmetries.

Our QMC calculation is the first one for a three-orbital system with spin and orbital
rotational invariance, as well as the first one for an IHMMFT calculation with full
account of the multiorbital interactions in the Hamiltonian (2.9).

For the above purposes we selectegdRBIO, [78] as a test. As was introduced in
§1.3.3, this material is a prototype of three-orbital systems. The crystal has a single-
layered perovskite structure without any rotational distortion of Ro@ahedra (the de-
tailed structure is explained §6.2). The simple structure makes it easy to deal with the
present method. Moreover, a partially extended nature of thedRurdzitals allows for
a relatively small interaction parametés /W ~ 0.4-1), compared with those for thel 3
transition-metal oxided{/W > 1). This is advantageous for the computational time.

We also compare the obtained results with experimental ones. Since wb) tagwat
J as parameters, we cannot discuss quantitative agreements with experimental results.
Nevertheless, we could make qualitative arguments for correlatfecte in SsRuQOy,
suggested in many experimental and theoretical studies.

6.1.2 Correlation dfects in SLbRuUO,4

Since the discovery of the superconductivity [2] and the subsequent experiments identi-
fying its pairing symmetry as spin triplet [54, 246],,BuO, has engaged considerable
attentions.

The quasiparticle spectra in the normal state of the material have a special importance
for understanding the occurrence of the superconductivity, since the transition temper-
ature, in general, is determined by the density of states near the Fermi level. While
the Fermi surface calculated with the LDA [247, 248, 249] is in good agreement with
the angle-resolved photoemission spectroscopy (ARPES) [250]-[253] and de Haas-van
Alphen (dHVA) experiments [78, 254], which detects energy levels in solids from a quan-
tum oscillation of magnetization in a magnetic field, the LDA cannot reproduce the peak
structure as observed in photoemission [195], [250]-[253], [255]-[259] and X-ray absorp-
tion spectra [257, 258]. In particular, the width, as well as the height, of the quasiparticle
peak at arounér is 2-3 times overestimated in the LDA. Also, the LDA cannot reproduce
a satellite peak in the photoemission spectra at areshd —2.5 eV (see Fig. 6.2 below),
which is interpreted as a precursor of the lower Hubbard band. Moreover, the LDA gives
3-4 times smaller féective mass for quasiparticles than that evaluated from the dHVA
[254], ARPES [250], optical conductivity [260] and specific heat measurements [261].
These failures in the LDA calculations suggest the importance of correlafiect®in
this material.
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Figure 6.1: The quasiparticle spectra for Byerbitals in SiRuC, calculated by Liebsch
and Lichtenstein [212]. (a) The LDADMFT result forU = 1.2 eV, U’ = 0.8 eV and
Ising-typed = 0.2 eV. (b) A tight-binding-model fitted DOS of the LDA result. (From
Ref. [212].)

Pérez-Navarrcet al. [262] investigated correlationfiects on the density of states
(DOS), particularly ater, comparing the LDA, the LDAU and a result with a self-
energy correction at RPA level. They incorporated a self-energy correction by fitting
peaks of the LDA DOS fod electrons with a double-Lorentzian function. They observed
that while both of the LDA and LDAU fail to explain the experimentally obtained small
DOS atEg, the self-energy correction significantly reduces the DOErat Tranet al.

[259] implemented a realistic Hartree-Fock calculation foR®1I0,, and compared the re-

sult with their X-ray photoemission data. The Hartree-Fock calculation fails to reproduce
the experimental peak positions as well as overestimates the quasiparticle bandwidth.
Then they examined a self-energy correction, to a second order in the interactions, to the
Hartree-Fock solution. They found that the self-energy correction reduces the quasiparti-
cle bandwidth, which is an improvement from the Hartree-Fock solution, while the peak
positions and intensities were not remedied so much. This result implies that contributions
from higher-order terms in the self-energy are crucial fgRBIO,.

Liebsch and Lichtenstein [212] applied the LBBRMFT method to the material. Al-
though SsRuQ, is a quasi-two-dimensional system, the DMFT would give the momentum-
independent part of the self-energy in a first approximation. Liebsch and Lichtenstein
constructed a simple tight-binding model reproducing the LDA bandstructure and solved
the model with the DMFF(Hirsch-Fye)QMC, where they usédi= 1.2 eV,U’ = 0.8 eV
and Ising-typel = 0.2 eV. They found a pronounced narrowing of thg,, bandwidths
and accompanying electron transfers fromdlg, bands to thel,, band, which shifts the
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Figure 6.2: The quasiparticle spectra for Byerbitals in SgRuQ,, calculated theoret-
ically and measured experimentally by Pchelkatal. [195] (a) Thet,y DOS obtained

with the LDA+DMFT method forU = 3.1 eV,U’ = 1.7 eV and Ising-typel = 0.7 eV.

(b) The comparison of the LDADMFT result [(a)] with the X-ray photoemission and the
LDA result. Light blue line is the spectral function for Rag-orbitals only, while black
solid line includes contributions from all orbitals. Red circles are the experimental data.
The theoretical spectra were multiplied with the Fermi functio at 20 K and were
broadened to account for the experimental resolution. (From Ref. [195].)

van Hove singularity ofd,, closer toEg (Fig. 6.1). Recently Pchelkinat al. [195]
proposed much larger interaction parameté&ds£ 3.1 eV, U’ = 1.7 eV, Ising-type

J = 0.7 eV), based on a constrained LDA calculation. They implemented a self-consistent
LDA +DMFT calculation [194], and compare the results with photoemission experiments.
They found a lower Hubbard peak at arouritleV, consistent with the photoemission data
(Fig. 6.2). The calculatedffective mass enhancements are 2.62 fordfyerbital, and

2.28 for thedy,y, orbitals, which are similar to, but somewhat smaller than, the experi-
mental estimates [250, 254, 260, 261].

Given these studies, we now implement a calculation preserving the spin and orbital
rotational symmetries, contrary to the preceding IHEDMFT calculations. We see how
correlation &ects change the spectra, by varying the strength of the interactions, and
discuss the dierent behavior of the spectra between the Ising and SU(2) Hund couplings.

6.2 Crystal structure and bandstructure of SLRUO,4

SKLRUQ, has the KNiF,4 crystal structure with the tetragonal symmetry [Fig. 6.3(a)]. A
ruthenium atom is surrounded by six oxygen atoms, which compose an octahedron. The
octahedra form two-dimensional arrays separated by strontium layers, and are elongated
alongc axis: The distance between a Ru atom and a neighboring O atomgrirextion

is 2.06A, which is larger than the sum of the ionic radii ofRand G-, while the distance
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Figure 6.3: (a) The crystal structure ohb,BUQ, (from Ref. [78]). (b) Level scheme fat
electrons.

between a Ru and O atoms in thleplane is 1.93A [263], which is smaller than the sum
of the ionic radii. This suggests that the hybridization betweerdRRad O orbitals is
strong in thea andb directions while it is weak in the direction. Thus the system has a
guasi-two-dimensional character.

A Ru* ion has fourd electrons. Since the crystal field of the octahedra lifts theeRu-
orbitals about 4 eV higher than the Ry-orbitals, these four electrons occupy thg
orbitals and they orbitals are nearly empty [Fig. 6.3(b)].

Figure 6.4 is the LDA bandstructure calculated by Singh [248]. The three curves
crossing the Fermi energ¥ (= 0) are thet,g bands. One of the three bands has a band-
width almost twice larger than the others. The wider band corresponds thythebital
extending in theb plane and hybridizing with O42orbits in thea andb direction, while
the narrower bands correspond to thgandd,, orbitals extending perpendicular to tale
plane and hybridizing with O42orbits in thec direction and in one od andb directions.
Since the Ru-O hybridization along thexis is very small, thely, band has almost twice
wider than thed,, andd,, bands.

The Fermi surface obtained with the LDA calculation is consistent with the exper-
imental observations, such as ARPES [250]-[253] and dHVA measurements [78, 254]
(Fig. 6.5). The Fermi surface consists of three cylindrical sheets: one hole-like aheet (
centered at the X= (7, ) point and two electron-like sheet8 &éndy) centered at the
I' = (0, 0) point, and they have almost no dispersion aloagis. y sheet reflects the two-
dimensional character o, orbital whilea andg sheets derive frord,, andd,, orbitals,
which have a one-dimensional character in a Rl&yer, after taking account of a weak
hybridization between them.
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Figure 6.4: The LDA bandstructure of RuQ, calculated by Singh [248].

6.3 Modeling

The bandstructure of FRuQ, near the Fermi level can be well reproduced by a simple
tight-binding model focusing only on the Ryybands [212, 247, 248].

We follow the model construction by Liebsch and Lichtenstein [212]. They considered
a two-dimensional square lattice, where the lattice points represent Ru sites, and a weak
hybridization between RuQayers is neglected. Since the original Rugietahedra have
no rotational distortion, hybridizations betwedy andd,,y, orbitals are prohibited by
the diference in the parity under the mirror operation -z, i.e.,dy, is even whiledy,,,
is odd. Although there is a weak hybridization betwegrandd,, orbitals through next-
nearest-neighbor hoppings, here we neglect it according to Liebsch and Lichtenstein’s
formulation.

Then the dispersion on the square lattice with the hoppings up to next-nearest neigh-
bors is

e(K) = —ep — 2t cosky) — 2ty cosk,) + 4t" cosky) cosk). (6.1)

Here we define the (orbitally-dependent) level skift the nearest-neighbor hoppings
ty, ty, and the next nearest-neighbor hopping Liebsch and Lichtenstein determined
€0, Iy, ty andt’” by fitting them to the LDA bandstructure Fig. 6.4, and obtained

(€0, tx, ty, 1) = (0.50,0.44,0.44, -0.14) eV (6.2)
for thed,, band, and

(€0, tx, 1y, ) = (0.24,0.31,0.045 0.01), (0.24,0.0450.31,0.01) eV (6.3)
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Figure 6.5: The two-dimensional Fermi surfaces gR&I0, obtained with ARPES [252]
(from Ref. [78]).

for thed,,y, bands, respectively. These parameters produce the density of states shown in
Fig. 6.1(b), which has thd,, band edges at2.8 eV and 0.7 eV, thd,,,, band edges at
—-0.9 eV and 0.5 eV, and van Hove singularities at 0.05 eVdfgand at-0.80 eV and
0.26 eV ford,,y,, in agreement with the LDA bandstructure [248]. We adopt this density
of states as an initial input for the following DMFT calculations.

Next we consider the interaction part of the model. We employ the on-site interaction
in the formH;,; in EQ. (2.9). The problem is how to determine the paramdieesd J
(orU’ = U — 2J) because there is a large ambiguity in both theoretical and experimental
estimates: Liebsch and Lichtenstein [212] employed 1.2-1.5 eV and] = 0.2-0.4 eV,
based on the observation of a valence band satellite in the photoemission experiment
[255], which leads tdJ ~ 1.5 eV. Ferez-Navarreet al. [262] usedU = 2.4 eV (without
J terms) on the ground of another photoemission experiments [256, 264], andtTakan
[259] used a similar valug = 2.5 eV withJ = 0.5 eV. Meanwhile, Pchelkinat al. [195]
theoretically calculated these parameters by means of the constrained LDA, and obtained
U = 3.1 eV andJ = 0.7 eV. However, such theoretical calculationsttbandJ also have
some uncertainties: There is an ambiguity in the first-principles definition of the basis of
the tight-binding model (or definition of the Wannier functions), and in the treatment of
the screeningféect for electron-electron interactions.

So we implemented the LDADMFT calculation, changing values dfi{J) from (1.2,
0.2) eV to (2.4, 0.4) eV. Although a severe negative sign problem in the QMC algorithm
prevents studies for stronger couplings, we can clearly see a behatieedt from the
weak-coupling region in the quasiparticle spectra alreadyUod) = (2.4,0.4) eV. We
compare the SU(2) result to that with Ising Hund’s coupling and discutsreince be-
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tween them.

6.4 Result

6.4.1 Quasiparticle spectra — Comparison between Ising and SU(2)
cases

We have obtained the density of states fosRO, with the LDA+DMFT calculation
preserving the spin and orbital rotational symmetries.

First we implemented the DMFH(Trotter + Series-expansion)QMC calculation for
the three-orbital Hubbard model (2.9) with the dispersion (6.1) and the parameters (6.2)
and (6.3), changingy, J) from (1.2, 0.2) eV to (2.4, 0.4) eV with a fixed ratld =
15U’ = 6J, which is a reasonable parameterization for real materials and shtisfy
U’ + 2J. Throughout the calculations we use@d= 10 eV'! andL = 40, which are the
same as those employed in Ref. [195], but smaller than those in Ref. [212] (@here
70 eVt andL = 128 were used), and took2B x 10° samples in one QMC calculation
for the most computationally expensive casé,J) = (2.4,0.4) eV.

From the QMC calculation we obtained Green’s functi@g(r) (a = Xy, Xz y2), on the
imaginary-time axis. Then we calculated the spectral funchigio) for real frequencies
from the relation,

Ga(r) = - Lo dor———Adw) for 0<7<p (6.4)
This integral equation is, however, an ill-defined inverse problem because a small devia-
tion in G,(7) significantly dfects the solutiod\y(w). Indeed, a calculate@,(7) contains

some error bars coming from the stochastic process in the QMC simulation. Therefore, in
order to solve the inverse problem (6.4), we applied the maximum entropy method [265],
which provides a reasonable solution by use of some prior information of the solution

As(w), such ahg(w) > 0 and [~ Ag(w)dw = 1.

The obtainedA;(w), the density of quasiparticle states, is shown in Fig. 6.6, where
the DOS with Ising Hund’s coupling is also plotted for comparison. For weak couplings,
(U,J) = (1.2,0.2) eV, the spectra with SU(2) Hund’s coupling have a similar structure to
those obtained with Ising Hund’s coupling, which agree well with Liebsch and Lichten-
stein’s result [212]. We can see that the van Hove singularity foxyherbital remains
just aboveEr while those of thexz yz orbitals shift closer tder than those in the LDA
spectra. We can also see a precursor of the lower and upper Hubbard bands respectively at
around-1.2 eV and 1.8 eV foxz yz and at around-1.8 eV for xy. The upper Hubbard
band forxy is not visible in this resolution, which may be due to the wider width of the
Xy band.

As the interaction increases, the van Hove peaks become broader both in the Ising and
SU(2) cases, and the initial two-peak structure inx@ndyz DOS almost disappears
for (U, J) = (2.1,0.35) eV. However, for an increased,(J) = (2.4,0.4) eV, a remarkable
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Figure 6.6: The LDA-DMFT DOS for Rutyg orbitals in SgRuQ;, obtained with SU(2)
Hund’s coupling and the pair-hopping interaction (left panels), as compared with the DOS
with Ising Hund’s coupling (right). The ratio of the interactions is fixedJas 1.5U’ =

6J. The top panel displays the tight-binding-fitted LDA DOS [same as Fig. 6.1(b)]. The
arrow in the lower left panel indicates the quasiparticle peak discussed in the text.
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Figure 6.7: The quasiparticle mass enhancement fopbRurbitals of SgRuCGy, obtained
with the present SU(2)-symmetric calculation. The ratio of the interactions is fixed as
U = 15U’ = 6J. Lines are guide to the eye.

new structure emerges only for the SU(2) case, while the structure does not change so
much in the Ising case. In the SU(2) case, a sharp quasiparticle peak, and pronounced
lower and upper Hubbard peaks develop both fon¢handxz yzbands.

6.4.2 Quasiparticle mass

We have calculated the quasiparticle mass enhancemi¢ntP” (a = xy, yz zX), where

miPA is the band mass (i.e., mass fd&0 in the present tight-binding model) ang is

the mass obtained with the DMFT, from the imaginary part of the self-energy at the first
Matsubara frequendyv, = inT, using the relation,

s \—1 .
(ma) _ 1 REw) -y ImZa(iwo) (6.5)

mbA 0w u=0 wo

The result is plotted in Fig. 6.7. For both banmug/miPA increases almost linearly to
U(= 6J). For the largest parameters studied hdde Jj = (2.4,0.4) eV, the enhancement

is about 2.5 ford,, and about 2.9 fod,,y,, which are in agreement with experimental
estimates+ 3), but are somewhat smaller. Similar values are obtained with Ising Hund’s
coupling.

6.5 Discussion
First we discuss the fierent behaviors in the DOS fod(J) = (2.4,0.4) eV between the
Ising and SU(2) Hund couplings. The behavior in the SU(2) case is similar to that for the

single-orbital Hubbard model in the vicinity of Mott’s transition, where the quasiparticle
peak is interpreted as a Kondo resonance peak. Then ftieeedit behavior between the
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Ising and SU(2) cases may be attributed to teedent ease with which a Kondo singlet
is formed.

Concerning the dierence in the multiorbital system, we may refer to the discussion
by Arita and Held [176] for the orbital-selective Mott transition in the two-orbital Hub-
bard model (se3.3.4): Ford > Tk (Tk: Kondo temperature) two electrons in the two
different orbitals form a dfi spin-1 state. In SU(2) case, the spin-1 state can be screened
by conduction electrons in two stages by s@,irwhile the two-stage screening is not pos-
sible in Ising case since the two-electron state 8ith- 0 is higher in energy by than the
states withs* = +1 (cf. Fig. 2.2). Actually, in the metallic phase near the orbital-selective
Mott transition, a sharp quasiparticle peak has been observed for SU(2) Hund’s coupling
[104, 176], while it has not been observed for Ising Hund’s coupling [165, 166, 169].

In the present three-orbital case, th&atience between Ising and SU(2) is expected
to be more pronounced, since the energy splitting betv&en ig andS? = i% in the
Ising case is 2, which is twice the value for two-orbital Ising-type models.

Thus, although we took gRuQ, as an example, theftierent behaviors in the DOS
should be a general consequence for multiorbital systemsJdnithT, not only for the
present material. SinCB« approximategW (z = 3. the mass renormalization factor),
the diference may be more prominent in the vicinity of Mott’s transition. This means
that the inclusion of SU(2) symmetric Hund’s coupling and the pair-hopping interaction
is requisite for realistic calculations for strongly correlated materials. Although most of
the LDA+DMFT studies so far have employed Ising-type Hund’s coupling, the treatment
will underestimate the quasiparticle resonance.

Here we compare the present results with an experimental one. In Fig. 6.8 we plot the
present SU(2)-symmetric calculation with the photoemission spectrum [195], where the
theoretical spectra are multiplied by the Fermi function at 20K to adapt the experimental
condition. We see that the present DMFT spectra are remarkably closer to the experi-
mental result than the LDA spectrum. For all thé §) from (1.2, 0.2) to (2.4, 0.4) eV,
the height and the width of the quasiparticle spectrum are considerably reduced from the
LDA result. Although we can see a quasiparticle peak in the experimental spectra, we
cannot distinguish whether it derives from the van Hove singularity in the original band-
structure or from a formation of the Kondo singlet. We can also see a peak structure at
around-2 eV, which is considered to be a precursor of the lower Hubbard band. How-
ever, the position of the lower Hubbard peak is about 1 eV higher than the experimental
assignment. Also, the mass enhancementin Fig. 6.7 is about 113 ftyr€ (1.2,0.2) eV
and about 2.5 fory, J) = (2.4,0.4) eV, which are considerably improved from the LDA
result but are still smaller than the experimental estimatg)(

A part of these disagreements may be attributed to the fixed ratio of the interaction pa-
rameters we have taken, i.&l,= 1.5U’" = 6J, since we know that the mass enhancement
in multiorbital systems highly depends on the balance betwged’ and J, as well as
their strengths: For examplé,considerably increases the mass, as shown in Fig. 2.3(a).

Another reason for the above disagreements may be the neglect of the momentum
dependence of the self-energy in the DMFT. SincdRB0, is a quasi-two-dimensional
system, the momentum dependence may be significant. Such momentum dependence
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Figure 6.8: The comparison of the present result for the quasiparticle spectra with a
photoemission result for FRuQ,. Solid curve represents the tight-binding-fitted LDA
spectrum (i.e.lJ = 0 data for the tight-binding model), while dashed curves the results
calculated forld = 6J = 1.2, 1.8 and 2.4 eV. Circles are the photoemission data from
Ref. [195]. The theoretical spectra are multiplied by the Fermi function at 20 K.

can, in principle, be taken into account with the cluster extensions of the DMFT [26],
[144]-[154], [217] while such a calculation for three-orbital systems is too demanding to
implement at present.

Also there may be other contributions, e.g., from the electron-phonon coupling [122,
266] or from the spin-orbit interactions [84, 259]. The estimation of the contributions
from these #&ects requires further investigations.

6.6 Summary

We have demonstrated that the QMC algorithm developéd .im can be applied to a real
material with three orbitals.

We took SgRuQ, for the test, and compared the dependence of the DOS on the inter-
action strength between Ising and SU(2) Hund’s couplings. For an intermediate coupling
[(U,J) = (24,0.4) eV] we saw a remarkable fierence between the Ising and SU(2)
spectra: a sharp quasiparticle peak appears in the SU(2) case, while it does not in the
Ising case. We attribute thisféérence to the dierent formations of the Kondo singlet for
these two types of Hund’s coupling. This is expected to generally apply to multiorbital
materials, not only to SRuQ,. Although most of the LDADMFT studies so far have
invoked the Ising-type Hund coupling, the present result indicates the importance of the
rotationally symmetric Hund coupling and the pair-hopping interaction.

88



The quasiparticle spectra obtained in the present SU(2)-symmetric calculation tend to
have smaller quasiparticle bandwidths and the weights, and reproduce the lower Hubbard
peak, in agreement with the photoemission experiments. The present calculation also
provides an fective mass much improved from the LDA result. However, the calculated
position of the lower Hubbard peak is about 1 eV higher in energy than the experimental
assignment. Also thefkective mass is still smaller than experimental estimates. These
disagreements require further studies, including estimations of more realistic values of the
interaction parameters and a treatment of the momentum dependence of the self-energy,
as well as an estimation of the contribution from the electron-phonon [122, 266] and the
spin-orbit interactions [84, 259].
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Chapter 7

Concluding remarks

7.1 Summary of the thesis

We have investigated the multiorbital Hubbard model (2.9) with the dynamical mean-field
theory (DMFT), where our main interest is thifets of Hund’s coupling in multiorbital
systems.

- Development of a new QMC method

To study the &ect, we have especially paid attention on the spin and orbital rotational
symmetries in the Hamiltonian (2.9). The conventional Hirsch-Fye quantum Monte Carlo
(QMC) method, which solves arffective impurity model in the DMFT, hasfticulties
in treating the spin-flip and the pair-hopping interactions. So most DMPNIC calcu-
lations have heretofore neglected these interactions, which violates the spin and orbital
rotational symmetries.

To overcome the adversity, we have developed a novel auxiliary-field QMC method in
§4.5. In the algorithm we separate out interaction terms from one-body part of the Hamil-
tonian, using a series expansion for the spin-flip and the pair-hopping tétghsvhile
the Trotter decomposition for the density-density interactidts)( Then we decouple
the interaction terms by use of the conventional Hubbard-Stratonovich transformation for
Hu, and a new auxiliary-field transformation fbi.

The algorithm allows for spin- and orbital-rotational symmetric calculations not only
for two but for three or more orbital systems. This is important since there are many real
materials which involve three or more orbitals. The algorithm also considerably improves
the negative sign problem coming fraify term §4.3). The reduction of negative signs
is a great advantage already for two-orbital systems.

- ltinerant ferromagnetism in multiorbital systems

We have investigated the metallic ferromagnetism in multiorbital systems with the
present QMC method in combination with the DMFT. We calculated the spin suscepti-
bility for the double-orbital Hubbard model in a paramagnetic phase. First we showed
that the Ising treatment of the Hund exchange grossly overestimates the ferromagnetic
instability (§5.2). Then we examinedfects of interorbital interactiondJ( and J) on
itinerant ferromagnetism in multiorbital system§53), where our eyes are set on the
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problem whether metallic ferromagnetism in transition metals and their compounds can
be attributed to a single mechanism; lattice structurglund’s exchange. We have com-
pared the magnetic susceptibility for the cubic and the fcc lattices in three dimensions,
in the presence and the absence of Hund’s exchange coupling. Our results show that the
interorbital interactions significantlyfi@ct the ferromagnetic instability, in contrast to the
Kanamori theory, where the interorbital interactions are considered to have only minor
effects on metallic ferromagnetism. Our results indicate that both the lattice straaotilire
Hund’s exchange are crucial for the stability of the itinerant ferromagnetism in transition-
metal-based materials.

- Application to a three-orbital system —guQ,

Next we have demonstrated that the present algorithm is applicable to a three-orbital
model with a realistic bandstructure and interaction parameters fBugy, as the first
QMC calculation for three-orbital systems and for the LEEAMFT method in the pres-
ence of spin and orbital rotational symmetries. We showed that the quasiparticle spectra
substantially dfer between with the Ising and SU(2) Hund couplings for an intermediate-
coupling region. In particular, we found a remarkable enhancement of a quasiparticle peak
in the SU(2) spectra while we found no such structure in the Ising spectra. We attributed
the diference to the dierent formations of a Kondo singlet in thifective impurity model
for SU(2) and Ising Hund’s couplings. The comparison with experimental photoemission
spectrum shows an improvement in the present spectrum over the LDA result, although
there remain some discrepancies between the present and experimental results.

7.2 Future problems

In the following we mention some future problems.

- Effect of anisotropy ofl orbitals

In Chapter 5 we discussed itinerant ferromagnetism in the multiorbital Hubbard model,
using the the dispersion (5.13) for the simple cubic lattice and (5.14) for the fcc lattice,
where we have assumed that the electron transfers are isotropic, to make the discussions
simple.

In reality, howeverd orbitals have anisotropic shapes, so that the transfers in general
depend on the orbitals and the directions. A study taking account of the anisotropy is
under way.

- Ferromagnetism in bcc Fe

In connection with the above argument, we are interested in ferromagnetism in bcc
Fe. Experimentally, the Curie temperature of Fg £ 1043 K) is much higher than that
of Ni (T, = 631 K). An LDA+DMFT calculation [210] also found Fe to have a Curie
temperature much higher than that for Ni, although the values should be overestimated
for both materials owing to the Ising treatment of Hund’s coupling.

However, some preliminary calculations for a bcc lattice with isotropic transfers show
that ferromagnetism is less favored in the bcc lattice than in the fcc lattice, in agreement
with a single-orbital case [143]. Therefore, it may be necessary to take account of the
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anisotropy of thel orbitals to account for the high Curie temperature of bcc Fe. A study
in this direction is also under way.

- LDA+DMFT for other ruthenates

A series of ruthenates have various intriguing properties. In particular, the Ruddlesden-
Popper-type perovskite strontium ruthenateg, :8u,03,,1, Show spin-triplet supercon-
ductivity for n = 1 [2, 78], metamagnetic quantum criticality far= 2 [267], ferro-
magnetism fon = 3 [268] andn = o (SrRuQ) [269]. This implies some relevance of
the ferromagnetism to the dimensionality in the ruthenates. The antiferromagnetic Mott
insulator CaRuQ, also becomes a ferromagnetic metal under pressure [270].

It is challenging to see whether the diverse properties can be reproduced in the present
scheme.
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Appendix

We derive here the factdf(k; s, S, -+ ,S) (§=0,1;k = ZiLzl s) for EqQ. (4.32). We in-
troduce this factor to account for the contribution from the terms with conseofolt’wat
the same imaginary-time interval in the sum (4.31). These terms have been replaced with
terms havingX;'s on proximate imaginary-time intervals in Eq. (4.32). In the following
we abbreviate 47 Ho+Hv) ash andX; asx.

Central to our consideration are those terms that include a substhixigx - - hx
where x and h appear alternatelyn andm — 1 times, respectively, with Z m < L.
This is because any term with consecute® will be replaced with a term having such
substrings. For examplexhhx --hxandxhxxh- - - hx are both approximately the same
asxhxhx - - hx [where commuting ax and ah yields an error~ O(47)]. In general, we
commutex’s andh’s until there are no consecutivés any longer. Hence, we end up with
an alternation ok’s andh’s, i.e., anxhxhx..hx substring. Because of these replacements,
terms having such a substring have to be weighted more. In the following, we construct a
rule for the replacement and weighting factor, avoiding a double counting.

Let us denote bya position (from the left) in a substring which consistsroKs and
(m-1) h's altogether. We define; andg; as the number of’'s andh’s that are in [1i].
All substrings having

ai > B foralli (7.1)

will be replaced withxhxhx - - hx which has alternating’s andh’s.

For example, fom = 2 xhxandxxhwill be replaced withxhx for m = 3, xhxhx
xhxxh xxhhx xxhxhand xxxhhwill all be replaced withxhxhx The condition (7.1)
is necessary to avoid a double counting. However, the condition (7.1) excludes the sub-
strings situated at the end of the imaginary time interval for whi¢h so thate; < ;..
These terms are replaced with a substoihghx: - - hx, where the lask is atL, namely,
only when the lask is atL, doesxhxhx: - - hxreplace all the substrings havingXs and
(m-1) h's, which requires a separate treatmarfiactors below).

A second factor to be taken into account is a correction of the volume in the imaginary-
time integrals; namely, the weight for those terms having consecxitia

Ji # Jis1 = Jisz = = Jisl # Jivis1 (7.2)

in the sum (4.31) should be reduced by a faqi‘gosince the imaginary times originally
satisfy a relation

G <tip<--- <ty (7.3)
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Figure 7.1: A schematic representation of the calculation of¢aand (b)c,. The co-
ordinates in the and j directions represent the numbersthoand x, respectively. The
number at a pointi{ j) denotes (ab(i, j) and (b)d(i, j), which are recursively calculated
with Eq. (7.5) and (7.7), respectively.

in Eq. (4.30). Hence the volume férconsecutivex terms, as in Eq. (7.2), should be

reduced toﬁ—f.

Let us now introduce the quantibfi, j) for the weight (apart from the volume factor
L)) of all the substrings havinigh’s and j x’s. For j consecutives’s, we simply have the
aforementioned /A! factor, i.e.,

b(0, j) = ,—1| for 0<j<L. (7.4)

This is the starting point for the recurrence formula [Fig. 7.1(a)],

b, J)—Z k)l ~Lkforl<i<j<lL, (7.5)

which arises from taking away the rightmost elements of the bypex: - - x with (j — k)
X's from the substring of length+ j. At the end, the recurrence formula (7.5) yields the
weighting factorg; for the substringxhxhx - - hx with m Xs andm—- 1 h’s:

a =b(i-1i)=b(,i) for 1<i<L. (7.6)

Only when the lask in xhxhx..hxis situated at the end of the imaginary-time interval
(L) do we use the factar, instead, which is obtained via the slightlyfidirent recurrence
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formula [see Fig. 7.1(b)],

. 1 .
d(O,j)zj— for 0< <L,

d(i. J) = Z k), -1k

for 13|§L landO< j <L,
¢=d(i-1i) for 1<i<L. (7.7)

From thea’s andc’s, the total weight is calculated by multiplying the contributions
an andc,, from eachxhxhx..hx-type substring in the Boltzmann factor and the volume
L. For example, fot. = 8,

F(2:11,0,0,0,0,0,0) = a,L 2,
F(5:0,1,0,1,0,1,1,1) = csL™>,
F(6;1,0,1,1,0,1,1,1) = ay,csL°. (7.8)

In the first example, the Boltzmann factorhighxhhhhhh This array replaces itself and
hxxhhhhhhhwhich is Weightedzl—!, and thereby the factor fédrxhxhhhhhlisa, = 1+ % =

% multiplied by L=2. The second example correspondshtixhhxhhxhx hxwhere the
substring to be multiplied by a factor is only the last pdrkhx Therefore the factor is
csL~°. In the last examplaxhhxhxhhxhxhxwo substringxhxandxhxhxare multiplied
by a, andcs, respectively. So the total factoras x csL 5.
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